BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 24650983)

  • 1. FlyAR: augmented reality supported micro aerial vehicle navigation.
    Zollmann S; Hoppe C; Langlotz T; Reitmayr G
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):560-8. PubMed ID: 24650983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Augmented Reality Visualization System for Simulated Multirotor Aerial Vehicles.
    Moura ÉA; Góes LCS; Silva RGAD; Paula AA
    An Acad Bras Cienc; 2024; 96(1):e20220822. PubMed ID: 38808808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward autonomous avian-inspired grasping for micro aerial vehicles.
    Thomas J; Loianno G; Polin J; Sreenath K; Kumar V
    Bioinspir Biomim; 2014 Jun; 9(2):025010. PubMed ID: 24852023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depth perception--a major issue in medical AR: evaluation study by twenty surgeons.
    Sielhorst T; Bichlmeier C; Heining SM; Navab N
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):364-72. PubMed ID: 17354911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An effective visualization technique for depth perception in augmented reality-based surgical navigation.
    Choi H; Cho B; Masamune K; Hashizume M; Hong J
    Int J Med Robot; 2016 Mar; 12(1):62-72. PubMed ID: 25951494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drone-Augmented Human Vision: Exocentric Control for Drones Exploring Hidden Areas.
    Erat O; Isop WA; Kalkofen D; Schmalstieg D
    IEEE Trans Vis Comput Graph; 2018 Apr; 24(4):1437-1446. PubMed ID: 29543162
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Egocentric depth judgments in optical, see-through augmented reality.
    Swan JE; Jones A; Kolstad E; Livingston MA; Smallman HS
    IEEE Trans Vis Comput Graph; 2007; 13(3):429-42. PubMed ID: 17356211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usability engineering for augmented reality: employing user-based studies to inform design.
    Gabbard JL; Swan JE
    IEEE Trans Vis Comput Graph; 2008; 14(3):513-25. PubMed ID: 18369261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual reality for embryonic measurements requiring depth perception.
    Rousian M; Koning AH; van der Spek PJ; Steegers EA; Exalto N
    Fertil Steril; 2011 Feb; 95(2):773-4. PubMed ID: 21255699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opportunistic tangible user interfaces for augmented reality.
    Henderson S; Feiner S
    IEEE Trans Vis Comput Graph; 2010; 16(1):4-16. PubMed ID: 19910657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An infrastructure for realizing custom-tailored augmented reality user interfaces.
    Broll W; Lindt I; Ohlenburg J; Herbst I; Wittkämper M; Novotny T
    IEEE Trans Vis Comput Graph; 2005; 11(6):722-33. PubMed ID: 16270864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superman vs Giant: A Study on Spatial Perception for a Multi-Scale Mixed Reality Flying Telepresence Interface.
    Piumsomboon T; Lee GA; Ens B; Thomas BH; Billinghurst M
    IEEE Trans Vis Comput Graph; 2018 Nov; 24(11):2974-2982. PubMed ID: 30387715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensible visualization for augmented reality.
    Kalkofen D; Mendez E; Schmalstieg D
    IEEE Trans Vis Comput Graph; 2009; 15(2):193-204. PubMed ID: 19147885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dex-ray: augmented reality neurosurgical navigation with a handheld video probe.
    Kockro RA; Tsai YT; Ng I; Hwang P; Zhu C; Agusanto K; Hong LX; Serra L
    Neurosurgery; 2009 Oct; 65(4):795-807; discussion 807-8. PubMed ID: 19834386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. VU-flow: a visualization tool for analyzing navigation in virtual environments.
    Chittaro L; Ranon R; Ieronutti L
    IEEE Trans Vis Comput Graph; 2006; 12(6):1475-85. PubMed ID: 17073370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing depth perception in translucent volumes.
    Kersten MA; Stewart AJ; Troje N; Ellis R
    IEEE Trans Vis Comput Graph; 2006; 12(5):1117-23. PubMed ID: 17080842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensing surrounding 3-D space for navigation of the blind. A prototype system featuring vibration arrays and data fusion provides a near real-time feedback.
    Bourbakis N
    IEEE Eng Med Biol Mag; 2008; 27(1):49-55. PubMed ID: 18270050
    [No Abstract]   [Full Text] [Related]  

  • 19. Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display.
    Zinser MJ; Mischkowski RA; Dreiseidler T; Thamm OC; Rothamel D; Zöller JE
    Br J Oral Maxillofac Surg; 2013 Dec; 51(8):827-33. PubMed ID: 24045105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based augmented reality for improved surgical scene understanding.
    Pauly O; Diotte B; Fallavollita P; Weidert S; Euler E; Navab N
    Comput Med Imaging Graph; 2015 Apr; 41():55-60. PubMed ID: 24998759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.