These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 24650987)

  • 1. Dynamic affordances in embodied interactive systems: the role of display and mode of locomotion.
    Grechkin TY; Plumert JM; Kearney JK
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):596-605. PubMed ID: 24650987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of redirected walking algorithms in a constrained virtual world.
    Hodgson E; Bachmann E; Thrash T
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):579-87. PubMed ID: 24650985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of detection thresholds for redirected walking techniques.
    Steinicke F; Bruder G; Jerald J; Frenz H; Lappe M
    IEEE Trans Vis Comput Graph; 2010; 16(1):17-27. PubMed ID: 19910658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Personified and multistate camera motions for first-person navigation in desktop virtual reality.
    Terziman L; Marchal M; Multon F; Arnaldi B; Lécuyer A
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):652-61. PubMed ID: 23428450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment.
    Zanbaka CA; Lok BC; Babu SV; Ulinski AC; Hodges LF
    IEEE Trans Vis Comput Graph; 2005; 11(6):694-705. PubMed ID: 16270862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drumming in immersive virtual reality: the body shapes the way we play.
    Kilteni K; Bergstrom I; Slater M
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):597-605. PubMed ID: 23428444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory conflict alters visual perception of action capabilities during crossing of a closing gap in virtual reality.
    Snyder N; Cinelli M
    Q J Exp Psychol (Hove); 2020 Dec; 73(12):2309-2316. PubMed ID: 32640870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinematic evaluation of virtual walking trajectories.
    Cirio G; Olivier AH; Marchal M; Pettré J
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):671-80. PubMed ID: 23428452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing the range of perceptually natural visual walking speeds for virtual walking-in-place locomotion.
    Nilsson NC; Serafin S; Nordahl R
    IEEE Trans Vis Comput Graph; 2014 Apr; 20(4):569-78. PubMed ID: 24650984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating position and heading estimations: rotated visual orientation cues perceived after walking reset headings but not positions.
    Mou W; Zhang L
    Cognition; 2014 Dec; 133(3):553-71. PubMed ID: 25215931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of reorientation techniques and distractors for walking in large virtual environments.
    Peck TC; Fuchs H; Whitton MC
    IEEE Trans Vis Comput Graph; 2009; 15(3):383-94. PubMed ID: 19282546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered steering strategies for goal-directed locomotion in stroke.
    Aburub AS; Lamontagne A
    J Neuroeng Rehabil; 2013 Jul; 10():80. PubMed ID: 23875969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognitive load and dual-task performance during locomotion poststroke: a feasibility study using a functional virtual environment.
    Kizony R; Levin MF; Hughey L; Perez C; Fung J
    Phys Ther; 2010 Feb; 90(2):252-60. PubMed ID: 20023003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The utility of a virtual reality locomotion interface for studying gait behavior.
    Sheik-Nainar MA; Kaber DB
    Hum Factors; 2007 Aug; 49(4):696-709. PubMed ID: 17702221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of the MR simulation approach for evaluating the effects of immersion on visual analysis of volume data.
    Laha B; Bowman DA; Schiffbauer JD
    IEEE Trans Vis Comput Graph; 2013 Apr; 19(4):529-38. PubMed ID: 23428436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic clearance measure to evaluate locomotor and perceptuo-motor strategies used for obstacle circumvention in a virtual environment.
    Darekar A; Lamontagne A; Fung J
    Hum Mov Sci; 2015 Apr; 40():359-71. PubMed ID: 25682376
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability of lower extremity joint kinematics during backward walking in a virtual environment.
    Katsavelis D; Mukherjee M; Decker L; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2010 Apr; 14(2):165-78. PubMed ID: 20346261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of peripheral visual cues in online visual guidance of locomotion.
    Marigold DS
    Exerc Sport Sci Rev; 2008 Jul; 36(3):145-51. PubMed ID: 18580295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of a character posture model on the communication of affect in an immersive virtual environment.
    Vinayagamoorthy V; Steed A; Slater M
    IEEE Trans Vis Comput Graph; 2008; 14(5):965-82. PubMed ID: 18599911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of a walking virtual reality system for rehabilitation: objective and subjective parameters.
    Borrego A; Latorre J; Llorens R; Alcañiz M; Noé E
    J Neuroeng Rehabil; 2016 Aug; 13(1):68. PubMed ID: 27503112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.