BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24651032)

  • 1. On the biodegradability of polyethylene glycol, polypeptoids and poly(2-oxazoline)s.
    Ulbricht J; Jordan R; Luxenhofer R
    Biomaterials; 2014 Jun; 35(17):4848-61. PubMed ID: 24651032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiologically relevant oxidative degradation of oligo(proline) cross-linked polymeric scaffolds.
    Yu SS; Koblin RL; Zachman AL; Perrien DS; Hofmeister LH; Giorgio TD; Sung HJ
    Biomacromolecules; 2011 Dec; 12(12):4357-66. PubMed ID: 22017359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyoxazolines for nonfouling surface coatings--a direct comparison to the gold standard PEG.
    Konradi R; Acikgoz C; Textor M
    Macromol Rapid Commun; 2012 Oct; 33(19):1663-76. PubMed ID: 22996913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study.
    Li X; Loh XJ; Wang K; He C; Li J
    Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update.
    Lorson T; Lübtow MM; Wegener E; Haider MS; Borova S; Nahm D; Jordan R; Sokolski-Papkov M; Kabanov AV; Luxenhofer R
    Biomaterials; 2018 Sep; 178():204-280. PubMed ID: 29945064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of degradable poly(L-lactide-co-ethylene glycol) porous tubes by liquid-liquid centrifugal casting for use as nerve guidance channels.
    Goraltchouk A; Freier T; Shoichet MS
    Biomaterials; 2005 Dec; 26(36):7555-63. PubMed ID: 16005955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives.
    Knop K; Hoogenboom R; Fischer D; Schubert US
    Angew Chem Int Ed Engl; 2010 Aug; 49(36):6288-308. PubMed ID: 20648499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery.
    Zhang M; Song CC; Du FS; Li ZC
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):25905-25914. PubMed ID: 28714308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature-sensitive biodegradable poly(ethylene glycol).
    Lee J; Joo MK; Kim J; Park JS; Yoon MY; Jeong B
    J Biomater Sci Polym Ed; 2009; 20(7-8):957-65. PubMed ID: 19454162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.
    Rafiemanzelat F; Fathollahi Zonouz A; Emtiazi G
    Amino Acids; 2013 Feb; 44(2):449-59. PubMed ID: 22833157
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(2-oxazoline)s and related pseudo-polypeptides.
    Schlaad H; Hoogenboom R
    Macromol Rapid Commun; 2012 Oct; 33(19):1599. PubMed ID: 22965791
    [No Abstract]   [Full Text] [Related]  

  • 13. Poly(2-oxazoline)s--are they more advantageous for biomedical applications than other polymers?
    Sedlacek O; Monnery BD; Filippov SK; Hoogenboom R; Hruby M
    Macromol Rapid Commun; 2012 Oct; 33(19):1648-62. PubMed ID: 23034926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Design of Non-Ionic Polymer Brushes as Biointerfaces: Poly(2-oxazine)s Outperform Both Poly(2-oxazoline)s and PEG.
    Morgese G; Verbraeken B; Ramakrishna SN; Gombert Y; Cavalli E; Rosenboom JG; Zenobi-Wong M; Spencer ND; Hoogenboom R; Benetti EM
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11667-11672. PubMed ID: 30047615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol).
    Loh XJ; Tan KK; Li X; Li J
    Biomaterials; 2006 Mar; 27(9):1841-50. PubMed ID: 16305807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels.
    Martin JR; Patil P; Yu F; Gupta MK; Duvall CL
    Biomaterials; 2020 Dec; 263():120377. PubMed ID: 32947094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review.
    Hadinoto K; Sundaresan A; Cheow WS
    Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt A):427-43. PubMed ID: 23872180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, characterization and hydrolytic degradation of degradable poly(butylene terephthalate)/poly(ethylene glycol) (PBT/PEG) copolymers.
    Chao G; Fan L; Jia W; Qian Z; Gu Y; Liu C; Ni X; Li J; Deng H; Gong C; Gou M; Lei K; Huang A; Huang C; Yang J; Kan B; Tu M
    J Mater Sci Mater Med; 2007 Mar; 18(3):449-55. PubMed ID: 17334695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel biointerface that suppresses cell morphological changes by scavenging excess reactive oxygen species.
    Ikeda Y; Yoshinari T; Nagasaki Y
    J Biomed Mater Res A; 2015 Sep; 103(9):2815-22. PubMed ID: 25691268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(2-oxazoline) functionalized surfaces: from modification to application.
    Tauhardt L; Kempe K; Gottschaldt M; Schubert US
    Chem Soc Rev; 2013 Oct; 42(20):7998-8011. PubMed ID: 23860638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.