These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 24651116)

  • 1. Modeling crawling cell movement on soft engineered substrates.
    Löber J; Ziebert F; Aranson IS
    Soft Matter; 2014 Mar; 10(9):1365-73. PubMed ID: 24651116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenomenological modeling of durotaxis.
    Yu G; Feng J; Man H; Levine H
    Phys Rev E; 2017 Jul; 96(1-1):010402. PubMed ID: 29347081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traction force microscopy on soft elastic substrates: A guide to recent computational advances.
    Schwarz US; Soiné JR
    Biochim Biophys Acta; 2015 Nov; 1853(11 Pt B):3095-104. PubMed ID: 26026889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular motion of asymmetric self-propelling particles.
    Kümmel F; ten Hagen B; Wittkowski R; Buttinoni I; Eichhorn R; Volpe G; Löwen H; Bechinger C
    Phys Rev Lett; 2013 May; 110(19):198302. PubMed ID: 23705745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stick-slip motion and elastic coupling in crawling cells.
    Loosley AJ; Tang JX
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 1):031908. PubMed ID: 23030945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion.
    de Buyl P; Kapral R
    Nanoscale; 2013 Feb; 5(4):1337-44. PubMed ID: 23282885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay between substrate rigidity and tissue fluidity regulates cell monolayer spreading.
    Staddon MF; Murrell MP; Banerjee S
    Soft Matter; 2022 Oct; 18(40):7877-7886. PubMed ID: 36205535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscale swimming: the molecular dynamics approach.
    Rapaport DC
    Phys Rev Lett; 2007 Dec; 99(23):238101. PubMed ID: 18233414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct impacts of substrate elasticity and ligand affinity on traction force evolution.
    Müller C; Pompe T
    Soft Matter; 2016 Jan; 12(1):272-80. PubMed ID: 26451588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal model of directed cell motility on patterned substrates.
    Mizuhara MS; Berlyand L; Aranson IS
    Phys Rev E; 2017 Nov; 96(5-1):052408. PubMed ID: 29347667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization of cells and soft objects driven by mechanical interactions: consequences for migration and chemotaxis.
    Leoni M; Sens P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022720. PubMed ID: 25768544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mathematical model of mechano-sensing and mechanically induced collective motility of cells on planar elastic substrates.
    Ahmed RK; Abdalrahman T; Davies NH; Vermolen F; Franz T
    Biomech Model Mechanobiol; 2023 Jun; 22(3):809-824. PubMed ID: 36814004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stick-slip dynamics of migrating cells on viscoelastic substrates.
    De PS; De R
    Phys Rev E; 2019 Jul; 100(1-1):012409. PubMed ID: 31499904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How many ways a cell can move: the modes of self-propulsion of an active drop.
    Loisy A; Eggers J; Liverpool TB
    Soft Matter; 2020 Mar; 16(12):3106-3124. PubMed ID: 32154549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling universal dynamics of cell spreading on elastic substrates.
    Fan H; Li S
    Biomech Model Mechanobiol; 2015 Nov; 14(6):1265-80. PubMed ID: 25850888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traction force microscopy in physics and biology.
    Style RW; Boltyanskiy R; German GK; Hyland C; MacMinn CW; Mertz AF; Wilen LA; Xu Y; Dufresne ER
    Soft Matter; 2014 Jun; 10(23):4047-55. PubMed ID: 24740485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elasticity-based mechanism for the collective motion of self-propelled particles with springlike interactions: a model system for natural and artificial swarms.
    Ferrante E; Turgut AE; Dorigo M; Huepe C
    Phys Rev Lett; 2013 Dec; 111(26):268302. PubMed ID: 24483817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid computational model for collective cell durotaxis.
    Escribano J; Sunyer R; Sánchez MT; Trepat X; Roca-Cusachs P; García-Aznar JM
    Biomech Model Mechanobiol; 2018 Aug; 17(4):1037-1052. PubMed ID: 29500553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tailoring the interactions between self-propelled bodies.
    Caussin JB; Bartolo D
    Eur Phys J E Soft Matter; 2014 Jun; 37(6):13. PubMed ID: 24965157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the mechanosensitivity of fast-crawling cells on cyclically stretched substrates.
    Molina JJ; Yamamoto R
    Soft Matter; 2019 Jan; 15(4):683-698. PubMed ID: 30623962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.