These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Preparation and Screening of Catalytic Amyloid Assemblies. Lengyel Z; Rufo CM; Korendovych IV Methods Mol Biol; 2018; 1777():261-270. PubMed ID: 29744841 [TBL] [Abstract][Full Text] [Related]
4. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes. Navarro S; Díaz-Caballero M; Peccati F; Roldán-Martín L; Sodupe M; Ventura S ACS Nano; 2023 Sep; 17(17):16968-16979. PubMed ID: 37647583 [TBL] [Abstract][Full Text] [Related]
5. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening. Friedmann MP; Torbeev V; Zelenay V; Sobol A; Greenwald J; Riek R PLoS One; 2015; 10(12):e0143948. PubMed ID: 26650386 [TBL] [Abstract][Full Text] [Related]
6. Design and Testing of Synthetic Catalytic Amyloids Based on the Active Site of Enzymes. Castillo-Caceres C; Duran-Meza E; Diaz-Espinoza R Methods Mol Biol; 2022; 2538():207-216. PubMed ID: 35951302 [TBL] [Abstract][Full Text] [Related]
7. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. Lengyel-Zhand Z; Marshall LR; Jung M; Jayachandran M; Kim MC; Kriews A; Makhlynets OV; Fry HC; Geyer A; Korendovych IV Chembiochem; 2021 Feb; 22(3):585-591. PubMed ID: 32956537 [TBL] [Abstract][Full Text] [Related]
9. Principles Governing Catalytic Activity of Self-Assembled Short Peptides. Song R; Wu X; Xue B; Yang Y; Huang W; Zeng G; Wang J; Li W; Cao Y; Wang W; Lu J; Dong H J Am Chem Soc; 2019 Jan; 141(1):223-231. PubMed ID: 30562022 [TBL] [Abstract][Full Text] [Related]
10. Catalytic Amyloid Fibrils That Bind Copper to Activate Oxygen. Sternisha A; Makhlynets O Methods Mol Biol; 2017; 1596():59-68. PubMed ID: 28293880 [TBL] [Abstract][Full Text] [Related]
11. Stopped-flow measurement of CO Marshall LR; Makhlynets OV Methods Enzymol; 2024; 697():35-49. PubMed ID: 38816130 [TBL] [Abstract][Full Text] [Related]
13. Solid-state NMR spectroscopic analysis for structure determination of a zinc-bound catalytic amyloid fibril. Baek Y; Lee M Methods Enzymol; 2024; 697():435-471. PubMed ID: 38816132 [TBL] [Abstract][Full Text] [Related]
14. Co(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn(II) Carbonic Anhydrase. Borghesani V; Zastrow ML; Tolbert AE; Deb A; Penner-Hahn JE; Pecoraro VL Chemistry; 2024 Apr; 30(24):e202304367. PubMed ID: 38377169 [TBL] [Abstract][Full Text] [Related]
15. Assembly and catalytic activity of short prion-inspired peptides. Garcia-Pardo J; Fornt-Suñé M; Ventura S Methods Enzymol; 2024; 697():499-526. PubMed ID: 38816134 [TBL] [Abstract][Full Text] [Related]
16. Functional characterization of the ATPase-like activity displayed by a catalytic amyloid. Castillo-Caceres C; Duran-Meza E; Nova E; Araya-Secchi R; Monasterio O; Diaz-Espinoza R Biochim Biophys Acta Gen Subj; 2021 Jan; 1865(1):129729. PubMed ID: 32916204 [TBL] [Abstract][Full Text] [Related]
17. Designed peptides that assemble into cross-α amyloid-like structures. Zhang SQ; Huang H; Yang J; Kratochvil HT; Lolicato M; Liu Y; Shu X; Liu L; DeGrado WF Nat Chem Biol; 2018 Sep; 14(9):870-875. PubMed ID: 30061717 [TBL] [Abstract][Full Text] [Related]
18. Zinc(II) modulates specifically amyloid formation and structure in model peptides. Alies B; Pradines V; Llorens-Alliot I; Sayen S; Guillon E; Hureau C; Faller P J Biol Inorg Chem; 2011 Feb; 16(2):333-40. PubMed ID: 21061029 [TBL] [Abstract][Full Text] [Related]
19. Chemical catalysis by biological amyloids. Wittung-Stafshede P Biochem Soc Trans; 2023 Oct; 51(5):1967-1974. PubMed ID: 37743793 [TBL] [Abstract][Full Text] [Related]