BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24651210)

  • 1. Interaction and dynamics of ambient water adlayers on graphite probed using AFM voltage nanolithography and electrostatic force microscopy.
    Gowthami T; Kurra N; Raina G
    Nanotechnology; 2014 Apr; 25(15):155304. PubMed ID: 24651210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of ambient ice-like water adlayers formed at the interfaces of graphene on hydrophobic and hydrophilic substrates probed using scanning probe microscopy.
    Gowthami T; Tamilselvi G; Jacob G; Raina G
    Phys Chem Chem Phys; 2015 Jun; 17(21):13964-72. PubMed ID: 25947671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of PeakForce tapping mode AFM imaging on the apparent shape of surface nanobubbles.
    Walczyk W; Schön PM; Schönherr H
    J Phys Condens Matter; 2013 May; 25(18):184005. PubMed ID: 23598774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of synthetic homo- and hetero-oligodeoxynucleotides onto highly oriented pyrolytic graphite: atomic force microscopy characterization.
    Chiorcea Paquim AM; Oretskaya TS; Oliveira Brett AM
    Biophys Chem; 2006 May; 121(2):131-41. PubMed ID: 16460874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging surface nanobubbles at graphite-water interfaces with different atomic force microscopy modes.
    Yang CW; Lu YH; Hwang IS
    J Phys Condens Matter; 2013 May; 25(18):184010. PubMed ID: 23598995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in single carboxymethylcellulose chains on a highly oriented pyrolytic graphite surface under different salt conditions.
    Ueno T; Yokota S; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 May; 342(7):954-60. PubMed ID: 17316582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: in situ atomic force microscopy and nanolithography study.
    Kolivoška V; Gál M; Hromadová M; Lachmanová S; Tarábková H; Janda P; Pospíšil L; Turoňová AM
    Colloids Surf B Biointerfaces; 2012 Jun; 94():213-9. PubMed ID: 22341519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.
    Kurra N; Prakash G; Basavaraja S; Fisher TS; Kulkarni GU; Reifenberger RG
    Nanotechnology; 2011 Jun; 22(24):245302. PubMed ID: 21508457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correct height measurement in noncontact atomic force microscopy.
    Sadewasser S; Lux-Steiner MCh
    Phys Rev Lett; 2003 Dec; 91(26 Pt 1):266101. PubMed ID: 14754069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular layer of gaslike domains at a hydrophobic-water interface observed by frequency-modulation atomic force microscopy.
    Lu YH; Yang CW; Hwang IS
    Langmuir; 2012 Sep; 28(35):12691-5. PubMed ID: 22897342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional material confined water.
    Li Q; Song J; Besenbacher F; Dong M
    Acc Chem Res; 2015 Jan; 48(1):119-27. PubMed ID: 25539031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of chitosan onto carbonaceous surfaces and its application: atomic force microscopy study.
    Tan S; Liu Z; Zu Y; Fu Y; Xing Z; Zhao L; Sun T; Zhou Z
    Nanotechnology; 2011 Apr; 22(15):155703. PubMed ID: 21389576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closer look at the effect of AFM imaging conditions on the apparent dimensions of surface nanobubbles.
    Walczyk W; Schönherr H
    Langmuir; 2013 Jan; 29(2):620-32. PubMed ID: 23210847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobubbles do not sit alone at the solid-liquid interface.
    Peng H; Hampton MA; Nguyen AV
    Langmuir; 2013 May; 29(20):6123-30. PubMed ID: 23597206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphological imaging of single methylcellulose chains and their thermoresponsive assembly on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Tatsumi D; Wariishi H
    Biomacromolecules; 2007 Dec; 8(12):3848-52. PubMed ID: 18004808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging ice-like structures formed on HOPG at room temperature.
    Teschke O
    Langmuir; 2010 Nov; 26(22):16986-90. PubMed ID: 20932040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward Single-Atomic-Layer Lithography on Highly Oriented Pyrolytic Graphite Surfaces Using AFM-Based Electrochemical Etching.
    Han W; Mathew PT; Kolagatla S; Rodriguez BJ; Fang F
    Nanomanuf Metrol; 2022; 5(1):32-38. PubMed ID: 35402782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembly of 50 bp poly(dA)·poly(dT) DNA on highly oriented pyrolytic graphite via atomic force microscopy observation and molecular dynamics simulation.
    Doi K; Takeuchi H; Nii R; Akamatsu S; Kakizaki T; Kawano S
    J Chem Phys; 2013 Aug; 139(8):085102. PubMed ID: 24007039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution atomic force microscopy study of hexaglycylamide epitaxial structures on graphite.
    Prokhorov VV; Klinov DV; Chinarev AA; Tuzikov AB; Gorokhova IV; Bovin NV
    Langmuir; 2011 May; 27(10):5879-90. PubMed ID: 21351798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.