These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24651405)

  • 1. Electro-actuated hydrogel walkers with dual responsive legs.
    Morales D; Palleau E; Dickey MD; Velev OD
    Soft Matter; 2014 Mar; 10(9):1337-48. PubMed ID: 24651405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel Walkers with Electro-Driven Motility for Cargo Transport.
    Yang C; Wang W; Yao C; Xie R; Ju XJ; Liu Z; Chu LY
    Sci Rep; 2015 Aug; 5():13622. PubMed ID: 26314786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the multiphasic model and the transport model for the swelling and deformation of polyelectrolyte hydrogels.
    Feng L; Jia Y; Li X; An L
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1328-35. PubMed ID: 21783142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.
    Chan AW; Neufeld RJ
    Biomaterials; 2009 Oct; 30(30):6119-29. PubMed ID: 19660810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tough and electro-responsive hydrogel actuators with bidirectional bending behavior.
    Jiang H; Fan L; Yan S; Li F; Li H; Tang J
    Nanoscale; 2019 Jan; 11(5):2231-2237. PubMed ID: 30656330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsive block copolymer photonics triggered by protein-polyelectrolyte coacervation.
    Fan Y; Tang S; Thomas EL; Olsen BD
    ACS Nano; 2014 Nov; 8(11):11467-73. PubMed ID: 25393374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyelectrolyte gel transitions: experimental aspects of charge inhomogeneity in the swelling and segmental attractions in the shrinking.
    Kokufuta E
    Langmuir; 2005 Oct; 21(22):10004-15. PubMed ID: 16229520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an Electro-Stimulated Hydrogel Actuator System with Fast Flexible Folding Deformation under a Low Electric Field.
    Shin Y; Choi MY; Choi J; Na JH; Kim SY
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15633-15646. PubMed ID: 33764732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical behavior of a natural polyelectrolyte hydrogel: chitosan/carboxymethylcellulose hydrogel.
    Shang J; Shao Z; Chen X
    Biomacromolecules; 2008 Apr; 9(4):1208-13. PubMed ID: 18311921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modeling study of the effect of environmental ionic valence on the mechanical characteristics of pH-electrosensitive hydrogel.
    Luo R; Li H
    Acta Biomater; 2009 Oct; 5(8):2920-8. PubMed ID: 19427422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects.
    Xiao S; Yang Y; Zhong M; Chen H; Zhang Y; Yang J; Zheng J
    ACS Appl Mater Interfaces; 2017 Jun; 9(24):20843-20851. PubMed ID: 28570039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic model for polyelectrolyte hydrogels.
    Arndt MC; Sadowski G
    J Phys Chem B; 2014 Sep; 118(35):10534-42. PubMed ID: 25105732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tough and responsive oppositely charged nanocomposite hydrogels for use as bilayer actuators assembled through interfacial electrostatic attraction.
    Liu S; Gao G; Xiao Y; Fu J
    J Mater Chem B; 2016 May; 4(19):3239-3246. PubMed ID: 32263259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels.
    Cayre OJ; Chang ST; Velev OD
    J Am Chem Soc; 2007 Sep; 129(35):10801-6. PubMed ID: 17691778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of pH and electrically controlled swelling of hydrogel-based micro-sensors/actuators.
    Yew YK; Ng TY; Li H; Lam KY
    Biomed Microdevices; 2007 Aug; 9(4):487-99. PubMed ID: 17520372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers.
    Kimura M; Takai M; Ishihara K
    J Biomater Sci Polym Ed; 2007; 18(5):623-40. PubMed ID: 17550663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of hydrolytic charge loss of DMAEA-Q-based polyelectrolytes by proton NMR spectroscopy and implications for colloid titration.
    Saveyn H; Hendrickx PM; Dentel SK; Martins JC; Van der Meeren P
    Water Res; 2008 May; 42(10-11):2718-28. PubMed ID: 18295818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiphysics modeling of responsive characteristics of ionic-strength-sensitive hydrogel.
    Li H; Lai F
    Biomed Microdevices; 2010 Jun; 12(3):419-34. PubMed ID: 20195766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Polymer networks as actuator and sensor systems to be used for automation of biomedical devices].
    Richter A; Krause W; Lienig J; Arndt KF
    Biomed Tech (Berl); 2005 Mar; 50(3):66-8. PubMed ID: 15832578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymer brushes: routes toward mechanosensitive surfaces.
    Bünsow J; Kelby TS; Huck WT
    Acc Chem Res; 2010 Mar; 43(3):466-74. PubMed ID: 20038136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.