These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24651430)

  • 1. Accelerating charging dynamics in subnanometre pores.
    Kondrat S; Wu P; Qiao R; Kornyshev AA
    Nat Mater; 2014 Apr; 13(4):387-93. PubMed ID: 24651430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions.
    Jiang X; Huang J; Zhao H; Sumpter BG; Qiao R
    J Phys Condens Matter; 2014 Jul; 26(28):284109. PubMed ID: 24919471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can ionophobic nanopores enhance the energy storage capacity of electric-double-layer capacitors containing nonaqueous electrolytes?
    Lian C; Liu H; Henderson D; Wu J
    J Phys Condens Matter; 2016 Oct; 28(41):414005. PubMed ID: 27546561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Understanding of Charging Dynamics in Supercapacitors with Porous Electrodes and Ionic Liquids.
    Mo T; He H; Zhou J; Zeng L; Long Y; Feng G
    J Phys Chem Lett; 2023 Dec; 14(50):11258-11267. PubMed ID: 38060214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charging dynamics of supercapacitors with narrow cylindrical nanopores.
    Lee AA; Kondrat S; Oshanin G; Kornyshev AA
    Nanotechnology; 2014 Aug; 25(31):315401. PubMed ID: 25026503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horn-like Pore Entrance Boosts Charging Dynamics and Charge Storage of Nanoporous Supercapacitors.
    Mo T; Peng J; Dai W; Chen M; Presser V; Feng G
    ACS Nano; 2023 Aug; 17(15):14974-14980. PubMed ID: 37498344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?
    Kondrat S; Kornyshev AA
    Nanoscale Horiz; 2016 Jan; 1(1):45-52. PubMed ID: 32260601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion Structure Transition Enhances Charging Dynamics in Subnanometer Pores.
    Mo T; Bi S; Zhang Y; Presser V; Wang X; Gogotsi Y; Feng G
    ACS Nano; 2020 Feb; 14(2):2395-2403. PubMed ID: 31999427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional graphitized carbon nanovesicles for high-performance supercapacitors based on ionic liquids.
    Peng C; Wen Z; Qin Y; Schmidt-Mende L; Li C; Yang S; Shi D; Yang J
    ChemSusChem; 2014 Mar; 7(3):777-84. PubMed ID: 24474720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Anion Shape on the Electrical Double Layer Microstructure and Capacitance of Ionic Liquids-Based Supercapacitors by Molecular Simulations.
    Chen M; Li S; Feng G
    Molecules; 2017 Feb; 22(2):. PubMed ID: 28212336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study.
    He Y; Huang J; Sumpter BG; Kornyshev AA; Qiao R
    J Phys Chem Lett; 2015 Jan; 6(1):22-30. PubMed ID: 26263086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge Me Slowly, I Am in a Hurry: Optimizing Charge-Discharge Cycles in Nanoporous Supercapacitors.
    Breitsprecher K; Holm C; Kondrat S
    ACS Nano; 2018 Oct; 12(10):9733-9741. PubMed ID: 30088913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-grained simulations of an ionic liquid-based capacitor: II. Asymmetry in ion shape and charge localization.
    Breitsprecher K; Košovan P; Holm C
    J Phys Condens Matter; 2014 Jul; 26(28):284114. PubMed ID: 24919958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes.
    Van Aken KL; McDonough JK; Li S; Feng G; Chathoth SM; Mamontov E; Fulvio PF; Cummings PT; Dai S; Gogotsi Y
    J Phys Condens Matter; 2014 Jul; 26(28):284104. PubMed ID: 24920163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling electrokinetics in ionic liquids.
    Wang C; Bao J; Pan W; Sun X
    Electrophoresis; 2017 Jul; 38(13-14):1693-1705. PubMed ID: 28314048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coarse-grained simulations of an ionic liquid-based capacitor: I. Density, ion size, and valency effects.
    Breitsprecher K; Košovan P; Holm C
    J Phys Condens Matter; 2014 Jul; 26(28):284108. PubMed ID: 24919407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to speed up ion transport in nanopores.
    Breitsprecher K; Janssen M; Srimuk P; Mehdi BL; Presser V; Holm C; Kondrat S
    Nat Commun; 2020 Nov; 11(1):6085. PubMed ID: 33257681
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial profiles of potential, ion concentration and flux in short unipolar and bipolar nanopores.
    Tajparast M; Virdi G; Glavinović MI
    Biochim Biophys Acta; 2015 Oct; 1848(10 Pt A):2138-53. PubMed ID: 26079796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric double-layer capacitance between an ionic liquid and few-layer graphene.
    Uesugi E; Goto H; Eguchi R; Fujiwara A; Kubozono Y
    Sci Rep; 2013; 3():1595. PubMed ID: 23549208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes.
    Zhong H; Xu F; Li Z; Fu R; Wu D
    Nanoscale; 2013 Jun; 5(11):4678-82. PubMed ID: 23632802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.