These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 24651455)

  • 41. Effect of sampling frequency on fractal fluctuations during treadmill walking.
    Marmelat V; Duncan A; Meltz S
    PLoS One; 2019; 14(11):e0218908. PubMed ID: 31697684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reliability of the walking speed and gait dynamics variables while walking on a feedback-controlled treadmill.
    Choi JS; Kang DW; Seo JW; Tack GR
    J Biomech; 2015 May; 48(7):1336-9. PubMed ID: 25798762
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Detrended fluctuation analysis and adaptive fractal analysis of stride time data in Parkinson's disease: stitching together short gait trials.
    Kirchner M; Schubert P; Liebherr M; Haas CT
    PLoS One; 2014; 9(1):e85787. PubMed ID: 24465708
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal accuracy of gait after metronome practice.
    Desrochers PC; Gill SV
    Hum Mov Sci; 2021 Jun; 77():102798. PubMed ID: 33857702
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gait Dynamics in Parkinson's Disease: Short Gait Trials "Stitched" Together Provide Different Fractal Fluctuations Compared to Longer Trials.
    Marmelat V; Reynolds NR; Hellman A
    Front Physiol; 2018; 9():861. PubMed ID: 30038582
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A comparison of variability and gait dynamics in spatiotemporal variables between different self-paced treadmill control modes.
    Wei W; Kaiming Y; Yu Z; Yuyang Q; Chenhui W
    J Biomech; 2020 Sep; 110():109979. PubMed ID: 32827775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeted Rhythmic Auditory Cueing During Treadmill and Overground Gait for Individuals With Parkinson Disease: A Case Series.
    Sherron MA; Stevenson SA; Browner NM; Lewek MD
    J Neurol Phys Ther; 2020 Oct; 44(4):268-274. PubMed ID: 32459723
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The influence of auditory-motor coupling on fractal dynamics in human gait.
    Hunt N; McGrath D; Stergiou N
    Sci Rep; 2014 Aug; 4():5879. PubMed ID: 25080936
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Individual differences in beat perception affect gait responses to low- and high-groove music.
    Leow LA; Parrott T; Grahn JA
    Front Hum Neurosci; 2014; 8():811. PubMed ID: 25374521
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking.
    Terrier P; Dériaz O
    J Neuroeng Rehabil; 2011 Feb; 8():12. PubMed ID: 21345241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fractal analysis of gait in people with Parkinson's disease: three minutes is not enough.
    Marmelat V; Meidinger RL
    Gait Posture; 2019 May; 70():229-234. PubMed ID: 30909002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comparative analysis of spectral exponent estimation techniques for 1/f(β) processes with applications to the analysis of stride interval time series.
    Schaefer A; Brach JS; Perera S; Sejdić E
    J Neurosci Methods; 2014 Jan; 222():118-30. PubMed ID: 24200509
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The effects of metronome frequency differentially affects gait on a treadmill and overground in people with Parkinson disease.
    Hoppe M; Chawla G; Browner N; Lewek MD
    Gait Posture; 2020 Jun; 79():41-45. PubMed ID: 32344358
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of Autocorrelated Rhythmic Auditory Stimulations on Parkinson's Disease Gait Variability: Comparison With Other Auditory Rhythm Variabilities and Perspectives.
    Lheureux A; Warlop T; Cambier C; Chemin B; Stoquart G; Detrembleur C; Lejeune T
    Front Physiol; 2020; 11():601721. PubMed ID: 33424625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility of external rhythmic cueing with the Google Glass for improving gait in people with Parkinson's disease.
    Zhao Y; Nonnekes J; Storcken EJ; Janssen S; van Wegen EE; Bloem BR; Dorresteijn LD; van Vugt JP; Heida T; van Wezel RJ
    J Neurol; 2016 Jun; 263(6):1156-65. PubMed ID: 27113598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Gait in younger and older adults during rhythmic auditory stimulation is influenced by groove, familiarity, beat perception, and synchronization demands.
    Ready EA; Holmes JD; Grahn JA
    Hum Mov Sci; 2022 Aug; 84():102972. PubMed ID: 35763974
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Hemiparetic stepping to the beat: asymmetric response to metronome phase shift during treadmill gait.
    Pelton TA; Johannsen L; Huiya Chen ; Wing AM
    Neurorehabil Neural Repair; 2010 Jun; 24(5):428-34. PubMed ID: 19952366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of supraspinal feedback on human gait: rhythmic auditory distortion.
    Forner-Cordero A; Pinho JP; Umemura G; Lourenço JC; Mezêncio B; Itiki C; Krebs HI
    J Neuroeng Rehabil; 2019 Dec; 16(1):159. PubMed ID: 31870399
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of visual and auditory cues on gait in individuals with Parkinson's disease.
    Suteerawattananon M; Morris GS; Etnyre BR; Jankovic J; Protas EJ
    J Neurol Sci; 2004 Apr; 219(1-2):63-9. PubMed ID: 15050439
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Closed-loop auditory feedback for the improvement of gait in patients with Parkinson's disease.
    Baram Y; Aharon-Peretz J; Badarny S; Susel Z; Schlesinger I
    J Neurol Sci; 2016 Apr; 363():104-6. PubMed ID: 27000231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.