These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 24651463)

  • 1. Polyelectrolyte properties of filamentous biopolymers and their consequences in biological fluids.
    Janmey PA; Slochower DR; Wang YH; Wen Q; Cēbers A
    Soft Matter; 2014 Mar; 10(10):1439-49. PubMed ID: 24651463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Vimentin Intermediate Filaments on the Structure and Dynamics of In Vitro Multicomponent Interpenetrating Cytoskeletal Networks.
    Shen Y; Wu H; Lu PJ; Wang D; Shayegan M; Li H; Shi W; Wang Z; Cai LH; Xia J; Zhang M; Ding R; Herrmann H; Goldman R; MacKintosh FC; Moncho-Jordá A; Weitz DA
    Phys Rev Lett; 2021 Sep; 127(10):108101. PubMed ID: 34533352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex.
    Wu H; Shen Y; Sivagurunathan S; Weber MS; Adam SA; Shin JH; Fredberg JJ; Medalia O; Goldman R; Weitz DA
    Proc Natl Acad Sci U S A; 2022 Mar; 119(10):e2115217119. PubMed ID: 35235449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyelectrolyte Gels Formed by Filamentous Biopolymers: Dependence of Crosslinking Efficiency on the Chemical Softness of Divalent Cations.
    Cruz K; Wang YH; Oake SA; Janmey PA
    Gels; 2021 Apr; 7(2):. PubMed ID: 33917686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposite effects of electrostatics and steric exclusion on bundle formation by F-actin and other filamentous polyelectrolytes.
    Tang JX; Ito T; Tao T; Traub P; Janmey PA
    Biochemistry; 1997 Oct; 36(41):12600-7. PubMed ID: 9376366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of counterion organization in F-actin polyelectrolyte bundles.
    Angelini TE; Liang H; Wriggers W; Wong GC
    Eur Phys J E Soft Matter; 2005 Apr; 16(4):389-400. PubMed ID: 19177656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparent stiffness of vimentin intermediate filaments in living cells and its relation with other cytoskeletal polymers.
    Smoler M; Coceano G; Testa I; Bruno L; Levi V
    Biochim Biophys Acta Mol Cell Res; 2020 Aug; 1867(8):118726. PubMed ID: 32320724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergent properties of composite semiflexible biopolymer networks.
    Jensen MH; Morris EJ; Goldman RD; Weitz DA
    Bioarchitecture; 2014; 4(4-5):138-43. PubMed ID: 25759912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte-mediated increase of biofilm mass formation.
    Bucki R; Niemirowicz K; Wnorowska U; Wątek M; Byfield FJ; Cruz K; Wróblewska M; Janmey PA
    BMC Microbiol; 2015 Jun; 15():117. PubMed ID: 26048182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Like-charge attraction between polyelectrolytes induced by counterion charge density waves.
    Angelini TE; Liang H; Wriggers W; Wong GC
    Proc Natl Acad Sci U S A; 2003 Jul; 100(15):8634-7. PubMed ID: 12853566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantifying the Interaction Strength Between Biopolymers.
    Lorenz C; Schepers AV; Köster S
    Methods Mol Biol; 2022; 2478():701-723. PubMed ID: 36063339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks.
    Janmey PA; Euteneuer U; Traub P; Schliwa M
    J Cell Biol; 1991 Apr; 113(1):155-60. PubMed ID: 2007620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the contribution of actin and vimentin intermediate filaments to mechanical phenotype of suspended cells using high-throughput deformability measurements and computational modeling.
    Gladilin E; Gonzalez P; Eils R
    J Biomech; 2014 Aug; 47(11):2598-605. PubMed ID: 24952458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vimentin intermediate filaments stabilize dynamic microtubules by direct interactions.
    Schaedel L; Lorenz C; Schepers AV; Klumpp S; Köster S
    Nat Commun; 2021 Jun; 12(1):3799. PubMed ID: 34145230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A direct interaction between actin and vimentin filaments mediated by the tail domain of vimentin.
    Esue O; Carson AA; Tseng Y; Wirtz D
    J Biol Chem; 2006 Oct; 281(41):30393-9. PubMed ID: 16901892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immunofluorescence studies of the cytoskeletal and contractile elements in cultured human trabecular cells.
    Tamura M; Iwamoto Y; Nakatsuka K; Yamanouchi U
    Jpn J Ophthalmol; 1989; 33(1):95-102. PubMed ID: 2659860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases.
    Robert A; Herrmann H; Davidson MW; Gelfand VI
    FASEB J; 2014 Jul; 28(7):2879-90. PubMed ID: 24652946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bidirectional Interplay between Vimentin Intermediate Filaments and Contractile Actin Stress Fibers.
    Jiu Y; Lehtimäki J; Tojkander S; Cheng F; Jäälinoja H; Liu X; Varjosalo M; Eriksson JE; Lappalainen P
    Cell Rep; 2015 Jun; 11(10):1511-8. PubMed ID: 26027931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polyelectrolyte behavior of actin filaments: a 25Mg NMR study.
    Xian W; Tang JX; Janmey PA; Braunlin WH
    Biochemistry; 1999 Jun; 38(22):7219-26. PubMed ID: 10353833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length regulation of active biopolymers by molecular motors.
    Johann D; Erlenkämper C; Kruse K
    Phys Rev Lett; 2012 Jun; 108(25):258103. PubMed ID: 23004664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.