These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24651483)

  • 1. Direct observation of unstained biological specimens in water by the frequency transmission electric-field method using SEM.
    Ogura T
    PLoS One; 2014; 9(3):e92780. PubMed ID: 24651483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-destructive observation of intact bacteria and viruses in water by the highly sensitive frequency transmission electric-field method based on SEM.
    Ogura T
    Biochem Biophys Res Commun; 2014 Aug; 450(4):1684-9. PubMed ID: 25058457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale analysis of unstained biological specimens in water without radiation damage using high-resolution frequency transmission electric-field system based on FE-SEM.
    Ogura T
    Biochem Biophys Res Commun; 2015 Apr; 459(3):521-8. PubMed ID: 25747717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct observation of unstained wet biological samples by scanning-electron generation X-ray microscopy.
    Ogura T
    Biochem Biophys Res Commun; 2010 Jan; 391(1):198-202. PubMed ID: 19900411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-contrast observation of unstained proteins and viruses by scanning electron microscopy.
    Ogura T
    PLoS One; 2012; 7(10):e46904. PubMed ID: 23056522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale imaging of untreated mammalian cells in a medium with low radiation damage using scanning electron-assisted dielectric microscopy.
    Okada T; Ogura T
    Sci Rep; 2016 Jul; 6():29169. PubMed ID: 27375121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of unstained biological samples in water using newly developed impedance scanning electron microscopy.
    Ogura T
    PLoS One; 2019; 14(8):e0221296. PubMed ID: 31430321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of multi-frequency impedance scanning electron microscopy.
    Ogura T
    PLoS One; 2022; 17(1):e0263098. PubMed ID: 35077509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High resolution SEM imaging of gold nanoparticles in cells and tissues.
    Goldstein A; Soroka Y; Frušić-Zlotkin M; Popov I; Kohen R
    J Microsc; 2014 Dec; 256(3):237-47. PubMed ID: 25228335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy.
    Ogura T
    Biochem Biophys Res Commun; 2008 Dec; 377(1):79-84. PubMed ID: 18834858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing indirect secondary electron contrast of unstained bacteriophage T4 based on SEM images and Monte Carlo simulations.
    Ogura T
    Biochem Biophys Res Commun; 2009 Mar; 380(2):254-9. PubMed ID: 19166816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of wet specimens sensitive to evaporation using scanning electron microscopy.
    Inoue N; Takashima Y; Suga M; Suzuki T; Nemoto Y; Takai O
    Microscopy (Oxf); 2018 Dec; 67(6):356-366. PubMed ID: 30307558
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in scanning electron microscopy of frozen-hydrated biological specimens.
    Hermann R; Müller M
    Scanning Microsc; 1993 Mar; 7(1):343-9; discussion 349-50. PubMed ID: 8316804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of wet specimens in electron microscopy. Improved environmental chambers make it possible to examine wet specimens easily.
    Parsons DF
    Science; 1974 Nov; 186(4162):407-14. PubMed ID: 4213401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the unstained biological sample by a novel scanning electron generation X-ray microscope based on SEM.
    Ogura T
    Biochem Biophys Res Commun; 2009 Aug; 385(4):624-9. PubMed ID: 19486897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micrograph contrast in low-voltage SEM and cryo-SEM.
    Liberman L; Kleinerman O; Davidovich I; Talmon Y
    Ultramicroscopy; 2020 Nov; 218():113085. PubMed ID: 32771863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution x-ray observation of unstained samples by a newly developed SGXM.
    Ogura T
    Nanotechnology; 2010 Jul; 21(29):295501. PubMed ID: 20601766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observations of unstained biological specimens using a low-energy, high-resolution STEM.
    Takaoka A; Hasegawa T
    J Electron Microsc (Tokyo); 2006 Jun; 55(3):157-63. PubMed ID: 16809349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning Electron Microscopy Sample Preparation and Imaging.
    Nguyen JNT; Harbison AM
    Methods Mol Biol; 2017; 1606():71-84. PubMed ID: 28501994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of sample-supporting film made of silicon nitride for large-area observation in transmission electron microscopy.
    Konyuba Y; Haruta T; Ikeda Y; Fukuda T
    Microscopy (Oxf); 2018 Dec; 67(6):367-370. PubMed ID: 30272156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.