These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 24651495)

  • 21. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model.
    Le Béchec A; Portales-Casamar E; Vetter G; Moes M; Zindy PJ; Saumet A; Arenillas D; Theillet C; Wasserman WW; Lecellier CH; Friederich E
    BMC Bioinformatics; 2011 Mar; 12():67. PubMed ID: 21375730
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamical gene regulatory networks are tuned by transcriptional autoregulation with microRNA feedback.
    Minchington TG; Griffiths-Jones S; Papalopulu N
    Sci Rep; 2020 Jul; 10(1):12960. PubMed ID: 32737375
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new model for investigating the evolution of transcription control networks.
    Jenkins DJ; Stekel DJ
    Artif Life; 2009; 15(3):259-91. PubMed ID: 19254178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emergence of robust regulatory motifs from in silico evolution of sustained oscillation.
    Jin Y; Meng Y
    Biosystems; 2011 Jan; 103(1):38-44. PubMed ID: 20920549
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Form and function in gene regulatory networks: the structure of network motifs determines fundamental properties of their dynamical state space.
    Ahnert SE; Fink TM
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27440255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A computational framework for qualitative simulation of nonlinear dynamical models of gene-regulatory networks.
    Ironi L; Panzeri L
    BMC Bioinformatics; 2009 Oct; 10 Suppl 12(Suppl 12):S14. PubMed ID: 19828074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological role of noise encoded in a genetic network motif.
    Kittisopikul M; Süel GM
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13300-5. PubMed ID: 20616054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A microarray data-based semi-kinetic method for predicting quantitative dynamics of genetic networks.
    Yugi K; Nakayama Y; Kojima S; Kitayama T; Tomita M
    BMC Bioinformatics; 2005 Dec; 6():299. PubMed ID: 16351711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene expression complex networks: synthesis, identification, and analysis.
    Lopes FM; Cesar RM; Costa Lda F
    J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Localized motif discovery in gene regulatory sequences.
    Narang V; Mittal A; Sung WK
    Bioinformatics; 2010 May; 26(9):1152-9. PubMed ID: 20223835
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of large disjoint motifs in biological networks.
    Elhesha R; Kahveci T
    BMC Bioinformatics; 2016 Oct; 17(1):408. PubMed ID: 27716036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal network motif reveals the biological traits of developmental gene regulatory networks in Drosophila melanogaster.
    Kim MS; Kim JR; Kim D; Lander AD; Cho KH
    BMC Syst Biol; 2012 May; 6():31. PubMed ID: 22548745
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of basic region leucine zipper transcription factors cyclic AMP response element binding protein (CREB), CREB2, activating transcription factor 2 and CAAT/enhancer binding protein alpha in cyclic AMP response element-mediated transcription.
    Thiel G; Al Sarraj J; Vinson C; Stefano L; Bach K
    J Neurochem; 2005 Jan; 92(2):321-36. PubMed ID: 15663480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping network motif tunability and robustness in the design of synthetic signaling circuits.
    Iadevaia S; Nakhleh LK; Azencott R; Ram PT
    PLoS One; 2014; 9(3):e91743. PubMed ID: 24642504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A data-driven modeling approach to identify disease-specific multi-organ networks driving physiological dysregulation.
    Anderson WD; DeCicco D; Schwaber JS; Vadigepalli R
    PLoS Comput Biol; 2017 Jul; 13(7):e1005627. PubMed ID: 28732007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loads bias genetic and signaling switches in synthetic and natural systems.
    Lyons SM; Xu W; Medford J; Prasad A
    PLoS Comput Biol; 2014 Mar; 10(3):e1003533. PubMed ID: 24676102
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs.
    Apte AA; Cain JW; Bonchev DG; Fong SS
    J Biol Eng; 2008 Feb; 2():2. PubMed ID: 18304325
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systems biology approach identifies key regulators and the interplay between miRNAs and transcription factors for pathological cardiac hypertrophy.
    Recamonde-Mendoza M; Werhli AV; Biolo A
    Gene; 2019 May; 698():157-169. PubMed ID: 30844478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Network motifs: structure does not determine function.
    Ingram PJ; Stumpf MP; Stark J
    BMC Genomics; 2006 May; 7():108. PubMed ID: 16677373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.