These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 24651721)

  • 1. Plant genome size variation: bloating and purging DNA.
    Michael TP
    Brief Funct Genomics; 2014 Jul; 13(4):308-17. PubMed ID: 24651721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.
    Vitte C; Panaud O
    Cytogenet Genome Res; 2005; 110(1-4):91-107. PubMed ID: 16093661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of retrotransposon activity in plants.
    Defraia C; Slotkin RK
    Methods Mol Biol; 2014; 1112():195-210. PubMed ID: 24478016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shifts in the evolutionary rate and intensity of purifying selection between two Brassica genomes revealed by analyses of orthologous transposons and relics of a whole genome triplication.
    Zhao M; Du J; Lin F; Tong C; Yu J; Huang S; Wang X; Liu S; Ma J
    Plant J; 2013 Oct; 76(2):211-22. PubMed ID: 23869625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes.
    Cossu RM; Casola C; Giacomello S; Vidalis A; Scofield DG; Zuccolo A
    Genome Biol Evol; 2017 Dec; 9(12):3449-3462. PubMed ID: 29228262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Terrestrial Carnivorous Plant
    Silva SR; Moraes AP; Penha HA; Julião MHM; Domingues DS; Michael TP; Miranda VFO; Varani AM
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31861318
    [No Abstract]   [Full Text] [Related]  

  • 9. Architecture and evolution of a minute plant genome.
    Ibarra-Laclette E; Lyons E; Hernández-Guzmán G; Pérez-Torres CA; Carretero-Paulet L; Chang TH; Lan T; Welch AJ; Juárez MJ; Simpson J; Fernández-Cortés A; Arteaga-Vázquez M; Góngora-Castillo E; Acevedo-Hernández G; Schuster SC; Himmelbauer H; Minoche AE; Xu S; Lynch M; Oropeza-Aburto A; Cervantes-Pérez SA; de Jesús Ortega-Estrada M; Cervantes-Luevano JI; Michael TP; Mockler T; Bryant D; Herrera-Estrella A; Albert VA; Herrera-Estrella L
    Nature; 2013 Jun; 498(7452):94-8. PubMed ID: 23665961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landscape and evolutionary dynamics of terminal repeat retrotransposons in miniature in plant genomes.
    Gao D; Li Y; Kim KD; Abernathy B; Jackson SA
    Genome Biol; 2016 Jan; 17():7. PubMed ID: 26781660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons.
    Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH
    J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA methylome of the 20-gigabase Norway spruce genome.
    Ausin I; Feng S; Yu C; Liu W; Kuo HY; Jacobsen EL; Zhai J; Gallego-Bartolome J; Wang L; Egertsdotter U; Street NR; Jacobsen SE; Wang H
    Proc Natl Acad Sci U S A; 2016 Dec; 113(50):E8106-E8113. PubMed ID: 27911846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into conifer giga-genomes.
    De La Torre AR; Birol I; Bousquet J; Ingvarsson PK; Jansson S; Jones SJ; Keeling CI; MacKay J; Nilsson O; Ritland K; Street N; Yanchuk A; Zerbe P; Bohlmann J
    Plant Physiol; 2014 Dec; 166(4):1724-32. PubMed ID: 25349325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incongruent evolution of chromosomal size in rice.
    Guo X; Xu G; Zhang Y; Wen X; Hu W; Fan L
    Genet Mol Res; 2006 Jun; 5(2):373-89. PubMed ID: 16819716
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of recent genome size variation in flowering plants.
    Bennetzen JL; Ma J; Devos KM
    Ann Bot; 2005 Jan; 95(1):127-32. PubMed ID: 15596462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptomics and molecular evolutionary rate analysis of the bladderwort (Utricularia), a carnivorous plant with a minimal genome.
    Ibarra-Laclette E; Albert VA; Pérez-Torres CA; Zamudio-Hernández F; Ortega-Estrada Mde J; Herrera-Estrella A; Herrera-Estrella L
    BMC Plant Biol; 2011 Jun; 11():101. PubMed ID: 21639913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The turbulent life of Sirevirus retrotransposons and the evolution of the maize genome: more than ten thousand elements tell the story.
    Bousios A; Kourmpetis YA; Pavlidis P; Minga E; Tsaftaris A; Darzentas N
    Plant J; 2012 Feb; 69(3):475-88. PubMed ID: 21967390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications.
    Carretero-Paulet L; Fares MA
    Mol Biol Evol; 2012 Nov; 29(11):3541-51. PubMed ID: 22734049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.