These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 24651830)

  • 1. Break-up of droplets in a concentrated emulsion flowing through a narrow constriction.
    Rosenfeld L; Fan L; Chen Y; Swoboda R; Tang SK
    Soft Matter; 2014 Jan; 10(3):421-30. PubMed ID: 24651830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Confinement and viscosity ratio effect on droplet break-up in a concentrated emulsion flowing through a narrow constriction.
    Gai Y; Khor JW; Tang SK
    Lab Chip; 2016 Aug; 16(16):3058-64. PubMed ID: 27194099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amphiphilic nanoparticles suppress droplet break-up in a concentrated emulsion flowing through a narrow constriction.
    Gai Y; Kim M; Pan M; Tang SKY
    Biomicrofluidics; 2017 May; 11(3):034117. PubMed ID: 28652887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using machine learning to discover shape descriptors for predicting emulsion stability in a microfluidic channel.
    Khor JW; Jean N; Luxenberg ES; Ermon S; Tang SKY
    Soft Matter; 2019 Feb; 15(6):1361-1372. PubMed ID: 30570628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study on the coalescence of emulsion droplets in a constricted capillary tube.
    Yan L; Thompson KE; Valsaraj KT
    J Colloid Interface Sci; 2006 Jun; 298(2):832-44. PubMed ID: 16483593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interparticle interactions in concentrate water-oil emulsions.
    Mishchuk NA; Sanfeld A; Steinchen A
    Adv Colloid Interface Sci; 2004 Dec; 112(1-3):129-57. PubMed ID: 15581558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal.
    Bick AD; Khor JW; Gai Y; Tang SKY
    Proc Natl Acad Sci U S A; 2021 May; 118(19):. PubMed ID: 33941691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsification mechanism and storage instabilities of hydrocarbon-in-water sub-micron emulsions stabilised with Tweens (20 and 80), Brij 96v and sucrose monoesters.
    Henry JV; Fryer PJ; Frith WJ; Norton IT
    J Colloid Interface Sci; 2009 Oct; 338(1):201-6. PubMed ID: 19589533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible oriented transition of multiple-emulsion globules with asymmetric internal structures in a microfluidic constriction.
    Wang J; Li X; Wang X; Guan J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052302. PubMed ID: 25353795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Droplet microfluidics driven by gradients of confinement.
    Dangla R; Kayi SC; Baroud CN
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):853-8. PubMed ID: 23284169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.
    Rother MA; Davis RH
    J Colloid Interface Sci; 1999 Jun; 214(2):297-318. PubMed ID: 10339370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coalescence of drops in a 2D microchannel: critical transitions to autocatalytic behaviour.
    Danny Raj M; Rengaswamy R
    Soft Matter; 2016 Jan; 12(1):115-22. PubMed ID: 26439512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A microfluidic method to study demulsification kinetics.
    Krebs T; Schroen K; Boom R
    Lab Chip; 2012 Mar; 12(6):1060-70. PubMed ID: 22215134
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.