These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24651885)

  • 1. Phase behaviour of active Brownian particles: the role of dimensionality.
    Stenhammar J; Marenduzzo D; Allen RJ; Cates ME
    Soft Matter; 2014 Mar; 10(10):1489-99. PubMed ID: 24651885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuum theory of phase separation kinetics for active Brownian particles.
    Stenhammar J; Tiribocchi A; Allen RJ; Marenduzzo D; Cates ME
    Phys Rev Lett; 2013 Oct; 111(14):145702. PubMed ID: 24138255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of motility-induced phase separation and swim pressure.
    Patch A; Yllanes D; Marchetti MC
    Phys Rev E; 2017 Jan; 95(1-1):012601. PubMed ID: 28208385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active Brownian equation of state: metastability and phase coexistence.
    Levis D; Codina J; Pagonabarraga I
    Soft Matter; 2017 Nov; 13(44):8113-8119. PubMed ID: 29105717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virial pressure in systems of spherical active Brownian particles.
    Winkler RG; Wysocki A; Gompper G
    Soft Matter; 2015 Sep; 11(33):6680-91. PubMed ID: 26221908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-induced phase separation and self-assembly in mixtures of active and passive particles.
    Stenhammar J; Wittkowski R; Marenduzzo D; Cates ME
    Phys Rev Lett; 2015 Jan; 114(1):018301. PubMed ID: 25615509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleation pathway and kinetics of phase-separating active Brownian particles.
    Richard D; Löwen H; Speck T
    Soft Matter; 2016 Jun; 12(24):5257-64. PubMed ID: 27126952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theory for the phase behavior of mixtures of active particles.
    Takatori SC; Brady JF
    Soft Matter; 2015 Oct; 11(40):7920-31. PubMed ID: 26323207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motility-Induced Microphase and Macrophase Separation in a Two-Dimensional Active Brownian Particle System.
    Caporusso CB; Digregorio P; Levis D; Cugliandolo LF; Gonnella G
    Phys Rev Lett; 2020 Oct; 125(17):178004. PubMed ID: 33156654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of active attractive spheres.
    Prymidis V; Sielcken H; Filion L
    Soft Matter; 2015 Jun; 11(21):4158-66. PubMed ID: 25866369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks.
    Levis D; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062301. PubMed ID: 25019770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase separation and state oscillation of active inertial particles.
    Dai C; Bruss IR; Glotzer SC
    Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinodal decomposition of polymer solutions: a parallelized molecular dynamics simulation.
    Yelash L; Virnau P; Paul W; Binder K; Müller M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031801. PubMed ID: 18851056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unfolding of a diblock chain and its anomalous diffusion induced by active particles.
    Xia YQ; Shen ZL; Tian WD; Chen K
    J Chem Phys; 2019 Apr; 150(15):154903. PubMed ID: 31005072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinodal decomposition of polymer solutions: molecular dynamics simulations of the two-dimensional case.
    Reith D; Bucior K; Yelash L; Virnau P; Binder K
    J Phys Condens Matter; 2012 Mar; 24(11):115102. PubMed ID: 22301356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. State behaviour and dynamics of self-propelled Brownian squares: a simulation study.
    Prymidis V; Samin S; Filion L
    Soft Matter; 2016 May; 12(19):4309-17. PubMed ID: 27079655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.
    Buttinoni I; Bialké J; Kümmel F; Löwen H; Bechinger C; Speck T
    Phys Rev Lett; 2013 Jun; 110(23):238301. PubMed ID: 25167534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigations of the dynamics of two-component vesicles.
    Taniguchi T; Yanagisawa M; Imai M
    J Phys Condens Matter; 2011 Jul; 23(28):284103. PubMed ID: 21709319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic structure perspective for MIPS interfaces in two-dimensional systems of active Brownian particles.
    Chacón E; Alarcón F; Ramírez J; Tarazona P; Valeriani C
    Soft Matter; 2022 Mar; 18(13):2646-2653. PubMed ID: 35302119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.