These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24651906)

  • 1. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces.
    Nair H; Staat HJ; Tran T; van Houselt A; Prosperetti A; Lohse D; Sun C
    Soft Matter; 2014 Apr; 10(13):2102-9. PubMed ID: 24651906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drop impact on superheated surfaces.
    Tran T; Staat HJ; Prosperetti A; Sun C; Lohse D
    Phys Rev Lett; 2012 Jan; 108(3):036101. PubMed ID: 22400761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boiling Transitions During Droplet Contact on Superheated Nano/Micro-Structured Surfaces.
    Saneie N; Kulkarni V; Fezzaa K; Patankar NA; Anand S
    ACS Appl Mater Interfaces; 2022 Apr; 14(13):15774-15783. PubMed ID: 35343695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric wettability of nanostructures directs leidenfrost droplets.
    Agapov RL; Boreyko JB; Briggs DP; Srijanto BR; Retterer ST; Collier CP; Lavrik NV
    ACS Nano; 2014 Jan; 8(1):860-7. PubMed ID: 24298880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of the Leidenfrost effect via low frequency vibrations.
    Ng BT; Hung YM; Tan MK
    Soft Matter; 2015 Jan; 11(4):775-84. PubMed ID: 25493924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fingering patterns during droplet impact on heated surfaces.
    Khavari M; Sun C; Lohse D; Tran T
    Soft Matter; 2015 May; 11(17):3298-303. PubMed ID: 25793227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extraordinary shifts of the Leidenfrost temperature from multiscale micro/nanostructured surfaces.
    Kruse C; Anderson T; Wilson C; Zuhlke C; Alexander D; Gogos G; Ndao S
    Langmuir; 2013 Aug; 29(31):9798-806. PubMed ID: 23799305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Behavior of Droplet Impact on Laminar Superheated Particles.
    Jiao Y; Hu X; Zhu Y; Guo Y; Ji J; Du Y; Wang J; Liu X; Wang W; Liu K
    Langmuir; 2023 Aug; 39(33):11925-11933. PubMed ID: 37566515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced interfacial boiling of impacting droplets upon vibratory surfaces.
    Wang JX; Qian J; Li JX; Wang X; Lei C; Li S; Li J; Zhong M; Mao Y
    J Colloid Interface Sci; 2024 Mar; 658():748-757. PubMed ID: 38142625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leidenfrost point reduction on micropatterned metallic surfaces.
    del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ
    Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High jump of impinged droplets before Leidenfrost state.
    Qiu L; Dubey S; Choo FH; Duan F
    Phys Rev E; 2019 Mar; 99(3-1):033106. PubMed ID: 30999492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-propelled Leidenfrost droplets.
    Linke H; Alemán BJ; Melling LD; Taormina MJ; Francis MJ; Dow-Hygelund CC; Narayanan V; Taylor RP; Stout A
    Phys Rev Lett; 2006 Apr; 96(15):154502. PubMed ID: 16712160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universality of oscillating boiling in Leidenfrost transition.
    Khavari M; Tran T
    Phys Rev E; 2017 Oct; 96(4-1):043102. PubMed ID: 29347618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanofluid Drop Impact on Heated Surfaces.
    Ma X; Aldhaleai A; Liu L; Tsai PA
    Langmuir; 2024 Feb; ():. PubMed ID: 38316019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of the Surface Peak-Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature.
    Jiao Y; Wang J; Guo Y; Du Y; Zhu Y; Ji J; Liu X; Liu K
    Langmuir; 2024 Oct; 40(39):20773-20782. PubMed ID: 39291359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced droplet control by transition boiling.
    Grounds A; Still R; Takashina K
    Sci Rep; 2012; 2():720. PubMed ID: 23056912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroscopically flat and smooth superhydrophobic surfaces: heating induced wetting transitions up to the Leidenfrost temperature.
    Liu G; Craig VS
    Faraday Discuss; 2010; 146():141-51; discussion 195-215, 395-403. PubMed ID: 21043419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.