These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 2465202)

  • 1. Interspecies comparison of the highly-repeated DNA of Australasian Luzula (Juncaceae).
    Collet C; Westerman M
    Genetica; 1987 Oct; 74(2):95-103. PubMed ID: 2465202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The holocentric species Luzula elegans shows interplay between centromere and large-scale genome organization.
    Heckmann S; Macas J; Kumke K; Fuchs J; Schubert V; Ma L; Novák P; Neumann P; Taudien S; Platzer M; Houben A
    Plant J; 2013 Feb; 73(4):555-65. PubMed ID: 23078243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The molecular structure, chromosomal organization, and interspecies distribution of a family of tandemly repeated DNA sequences of Antirrhinum majus L.
    Schmidt T; Kudla J
    Genome; 1996 Apr; 39(2):243-8. PubMed ID: 8984001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A family of dispersed repeats in the genome of Vicia faba: structure, chromosomal organization, redundancy modulation, and evolution.
    Frediani M; Gelati MT; Maggini F; Galasso I; Minelli S; Ceccarelli M; Cionini PG
    Chromosoma; 1999 Sep; 108(5):317-24. PubMed ID: 10525968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The distribution of repetitive DNAs between regular and supernumerary chromosomes in species of Glossina (Tsetse): a two-step process in the origin of supernumeraries.
    Amos A; Dover G
    Chromosoma; 1981; 81(5):673-90. PubMed ID: 6258877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and characterization of two satellite DNAs in the low-C-value genome of the nematode Meloidogyne spp.
    Piotte C; Castagnone-Sereno P; Bongiovanni M; Dalmasso A; Abad P
    Gene; 1994 Jan; 138(1-2):175-80. PubMed ID: 8125299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of holocentric centromeres of Luzula species.
    Haizel T; Lim YK; Leitch AR; Moore G
    Cytogenet Genome Res; 2005; 109(1-3):134-43. PubMed ID: 15753569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative structure and evolution of goat and sheep satellite I DNAs.
    Buckland RA
    Nucleic Acids Res; 1983 Mar; 11(5):1349-60. PubMed ID: 6298742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian repetitive DNA sequences in a stable Robertsonian system. Characterization, in situ hybridizations, and cross-species hybridizations of repetitive DNAs in calf, sheep, and goat chromosomes.
    Kurnit DM; Brown FL; Maio JJ
    Cytogenet Cell Genet; 1978; 21(3):145-67. PubMed ID: 657846
    [No Abstract]   [Full Text] [Related]  

  • 11. Analysis of DNAs from two species of the virilis group of Drosophila and implications for satellite DNA evolution.
    Cohen EH; Kaplan GC
    Chromosoma; 1982; 87(5):519-34. PubMed ID: 7182128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concerted evolution of primate alpha satellite DNA. Evidence for an ancestral sequence shared by gorilla and human X chromosome alpha satellite.
    Durfy SJ; Willard HF
    J Mol Biol; 1990 Dec; 216(3):555-66. PubMed ID: 2258932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An unusual satellite DNA from Zamia paucijuga (Cycadales) characterised by two different organisations of the repetitive unit in the plant genome.
    Cafasso D; Cozzolino S; De Luca P; Chinali G
    Gene; 2003 Jun; 311():71-9. PubMed ID: 12853140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tandemly repeated DNA sequences from Xenopus laevis. I. Studies on sequence organization and variation in satellite 1 DNA (741 base-pair repeat).
    Lam BS; Carroll D
    J Mol Biol; 1983 Apr; 165(4):567-85. PubMed ID: 6189999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repetitive DNA and chromosome evolution in plants.
    Flavell RB
    Philos Trans R Soc Lond B Biol Sci; 1986 Jan; 312(1154):227-42. PubMed ID: 2870519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alpha satellite DNAs on chromosomes 10 and 12 are both members of the dimeric suprachromosomal subfamily, but display little identity at the nucleotide sequence level.
    Looijenga LH; Oosterhuis JW; Smit VT; Wessels JW; Mollevanger P; Devilee P
    Genomics; 1992 Aug; 13(4):1125-32. PubMed ID: 1505948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The distribution of satellite and main-band DNA components in the melanogaster species subgroup of Drosophila. I. Fractionation of DNA in actinomycin D and distamycin A density gradients.
    Barnes SR; Webb DA; Dover G
    Chromosoma; 1978 Aug; 67(4):341-63. PubMed ID: 99293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transcribed satellite DNA from the bullfrog Rana catesbeiana.
    Wu ZG; Murphy C; Gall JG
    Chromosoma; 1986; 93(4):291-7. PubMed ID: 3009105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel classes of mouse repeated DNAs.
    Manuelidis L
    Nucleic Acids Res; 1980 Aug; 8(15):3247-58. PubMed ID: 6160469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.