These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 24652037)

  • 61. Ostwald's rule of stages governs structural transitions and morphology of dipeptide supramolecular polymers.
    Levin A; Mason TO; Adler-Abramovich L; Buell AK; Meisl G; Galvagnion C; Bram Y; Stratford SA; Dobson CM; Knowles TP; Gazit E
    Nat Commun; 2014 Nov; 5():5219. PubMed ID: 25391268
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Molecular Modeling and Simulations of Peptide-Polymer Conjugates.
    Taylor PA; Jayaraman A
    Annu Rev Chem Biomol Eng; 2020 Jun; 11():257-276. PubMed ID: 32513082
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Insight of Transmembrane Processes of Self-Assembling Nanotubes Based on a Cyclic Peptide Using Coarse Grained Molecular Dynamics Simulation.
    Fu Y; Yan T; Xu X
    J Phys Chem B; 2017 Sep; 121(38):9006-9012. PubMed ID: 28872323
    [TBL] [Abstract][Full Text] [Related]  

  • 65. What stabilizes the 3(14)-helix in beta3-peptides? A conformational analysis using molecular simulation.
    Keller B; Gattin Z; van Gunsteren WF
    Proteins; 2010 May; 78(7):1677-90. PubMed ID: 20186978
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Molecular insights into diphenylalanine nanotube assembly: all-atom simulations of oligomerization.
    Jeon J; Mills CE; Shell MS
    J Phys Chem B; 2013 Apr; 117(15):3935-43. PubMed ID: 23521630
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Free energy profile and mechanism of self-assembly of peptide amphiphiles based on a collective assembly coordinate.
    Yu T; Schatz GC
    J Phys Chem B; 2013 Aug; 117(30):9004-13. PubMed ID: 23822638
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Supramolecular Virus-Like Nanorods by Coassembly of a Triblock Polypeptide and Reversible Coordination Polymers.
    Hernandez-Garcia A; Velders AH; Stuart MA; de Vries R; van Lent JW; Wang J
    Chemistry; 2017 Jan; 23(2):239-243. PubMed ID: 27727480
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Secondary Structure-Driven Hydrogelation Using Foldable Telechelic Polymer-Peptide Conjugates.
    Otter R; Henke NA; Berac C; Bauer T; Barz M; Seiffert S; Besenius P
    Macromol Rapid Commun; 2018 Sep; 39(17):e1800459. PubMed ID: 30040152
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Peptide-polymer conjugates: from fundamental science to application.
    Shu JY; Panganiban B; Xu T
    Annu Rev Phys Chem; 2013; 64():631-57. PubMed ID: 23331303
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Peptide-polymer hybrid nanotubes.
    Couet J; Samuel JD; Kopyshev A; Santer S; Biesalski M
    Angew Chem Int Ed Engl; 2005 May; 44(21):3297-301. PubMed ID: 15830332
    [No Abstract]   [Full Text] [Related]  

  • 72. Entropically patchy particles: engineering valence through shape entropy.
    van Anders G; Ahmed NK; Smith R; Engel M; Glotzer SC
    ACS Nano; 2014 Jan; 8(1):931-40. PubMed ID: 24359081
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Recent Progress on Cyclic Peptides' Assembly and Biomedical Applications.
    Wu C; Wang H
    Chembiochem; 2023 Jul; 24(14):e202300018. PubMed ID: 37017003
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.
    Mizrahi M; Zakrassov A; Lerner-Yardeni J; Ashkenasy N
    Nanoscale; 2012 Jan; 4(2):518-24. PubMed ID: 22116517
    [TBL] [Abstract][Full Text] [Related]  

  • 75. DNA block copolymers: functional materials for nanoscience and biomedicine.
    Schnitzler T; Herrmann A
    Acc Chem Res; 2012 Sep; 45(9):1419-30. PubMed ID: 22726237
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Trace Water as Prominent Factor to Induce Peptide Self-Assembly: Dynamic Evolution and Governing Interactions in Ionic Liquids.
    Wang J; Yuan C; Han Y; Wang Y; Liu X; Zhang S; Yan X
    Small; 2017 Nov; 13(44):. PubMed ID: 28976074
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation.
    Rubin DJ; Nia HT; Desire T; Nguyen PQ; Gevelber M; Ortiz C; Joshi NS
    Biomacromolecules; 2013 Oct; 14(10):3370-5. PubMed ID: 24070499
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Thermodynamics of supramolecular naphthalenediimide nanotube formation: the influence of solvents, side chains, and guest templates.
    Ponnuswamy N; Pantoş GD; Smulders MM; Sanders JK
    J Am Chem Soc; 2012 Jan; 134(1):566-73. PubMed ID: 22098622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.