These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 24652085)

  • 1. Microsecond kinetics in model single- and double-stranded amylose polymers.
    Sattelle BM; Almond A
    Phys Chem Chem Phys; 2014 May; 16(17):8119-26. PubMed ID: 24652085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics simulation study on the conformational stability of amylose-linoleic acid complex in water.
    Cheng L; Feng T; Zhang B; Zhu X; Hamaker B; Zhang H; Campanella O
    Carbohydr Polym; 2018 Sep; 196():56-65. PubMed ID: 29891324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of artificial crystalline structure from amylose analog polysaccharide without hydroxy groups at C-2 position.
    Uto T; Nakamura S; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2020 Jul; 240():116347. PubMed ID: 32475598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shaping up for structural glycomics: a predictive protocol for oligosaccharide conformational analysis applied to N-linked glycans.
    Sattelle BM; Almond A
    Carbohydr Res; 2014 Jan; 383():34-42. PubMed ID: 24252626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double helix formation from non-natural amylose analog polysaccharides.
    Yui T; Uto T; Nakauchida T; Yamamoto K; Kadokawa JI
    Carbohydr Polym; 2018 Jun; 189():184-189. PubMed ID: 29580397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The double-helical nature of the crystalline part of A-starch.
    Imberty A; Chanzy H; Pérez S; Buléon A; Tran V
    J Mol Biol; 1988 May; 201(2):365-78. PubMed ID: 3418703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The analysis of the effects of high hydrostatic pressure (HHP) on amylose molecular conformation at atomic level based on molecular dynamics simulation.
    Zhi-Guang C; Hong-Hui Z; Keipper W; Hua-Yin P; Qi Y; Chen-Lu F; Guo-Wei S; Jun-Rong H
    Food Chem; 2020 Oct; 327():127047. PubMed ID: 32454269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elastic properties of single amylose chains in water: a quantum mechanical and AFM study.
    Lu Z; Nowak W; Lee G; Marszalek PE; Yang W
    J Am Chem Soc; 2004 Jul; 126(29):9033-41. PubMed ID: 15264836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct detection of the formation of V-amylose helix by single molecule force spectroscopy.
    Zhang Q; Lu Z; Hu H; Yang W; Marszalek PE
    J Am Chem Soc; 2006 Jul; 128(29):9387-93. PubMed ID: 16848474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 13C-N.M.R. study of the conformation of helical complexes of amylodextrin and of amylose in solution.
    Jane JL; Robyt JF; Huang DH
    Carbohydr Res; 1985 Jul; 140(1):21-35. PubMed ID: 4053096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose).
    Gessler K; Usón I; Takaha T; Krauss N; Smith SM; Okada S; Sheldrick GM; Saenger W
    Proc Natl Acad Sci U S A; 1999 Apr; 96(8):4246-51. PubMed ID: 10200247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.
    Jiang TY; Ci YP; Chou WI; Lee YC; Sun YJ; Chou WY; Li KM; Chang MD
    PLoS One; 2012; 7(7):e41131. PubMed ID: 22815939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate selectivity in starch polysaccharide monooxygenases.
    Vu VV; Hangasky JA; Detomasi TC; Henry SJW; Ngo ST; Span EA; Marletta MA
    J Biol Chem; 2019 Aug; 294(32):12157-12166. PubMed ID: 31235519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosidic linkage rotations determine amylose stretching mechanism.
    Kuttel M; Naidoo KJ
    J Am Chem Soc; 2005 Jan; 127(1):12-3. PubMed ID: 15631424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of 2,3-di-O-alkylated amyloses: hydrophobic substitution destabilizes helical conformation.
    Breitinger HG
    Biopolymers; 2003 Jul; 69(3):301-10. PubMed ID: 12833257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complexation Mechanisms of Aqueous Amylose: Molecular Dynamics Study Using 3-Pentadecylphenol.
    Skrdla PJ; Coscia BJ; Gavartin J; Browning A; Shelley J; Sanders JM
    Mol Pharm; 2024 Jul; 21(7):3540-3552. PubMed ID: 38900044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using geometric criteria to study helix-like structures produced in molecular dynamics simulations of single amylose chains in water.
    Khatami MH; Barber W; de Haan HW
    RSC Adv; 2021 Mar; 11(20):11992-12002. PubMed ID: 35423775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amylose folding under the influence of lipids.
    López CA; de Vries AH; Marrink SJ
    Carbohydr Res; 2012 Dec; 364():1-7. PubMed ID: 23128420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amylose crystallization from concentrated aqueous solution.
    Creek JA; Ziegler GR; Runt J
    Biomacromolecules; 2006 Mar; 7(3):761-70. PubMed ID: 16529412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.