BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24652443)

  • 1. Membrane monolayer protrusion mediates a new nanoparticle wrapping pathway.
    Yue T; Zhang X; Huang F
    Soft Matter; 2014 Mar; 10(12):2024-34. PubMed ID: 24652443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An unusual pathway for the membrane wrapping of rodlike nanoparticles and the orientation- and membrane wrapping-dependent nanoparticle interaction.
    Yue T; Wang X; Huang F; Zhang X
    Nanoscale; 2013 Oct; 5(20):9888-96. PubMed ID: 23979098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles.
    Yue T; Zhang X
    ACS Nano; 2012 Apr; 6(4):3196-205. PubMed ID: 22429100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrapping of nanoparticles by the cell membrane: the role of interactions between the nanoparticles.
    Tang H; Ye H; Zhang H; Zheng Y
    Soft Matter; 2015 Nov; 11(44):8674-83. PubMed ID: 26381589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wrapping of nanoparticles by membranes.
    Bahrami AH; Raatz M; Agudo-Canalejo J; Michel R; Curtis EM; Hall CK; Gradzielski M; Lipowsky R; Weikl TR
    Adv Colloid Interface Sci; 2014 Jun; 208():214-24. PubMed ID: 24703299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical method to quantify nanoparticle interaction with lipid bilayers.
    Carney RP; Astier Y; Carney TM; Voïtchovsky K; Jacob Silva PH; Stellacci F
    ACS Nano; 2013 Feb; 7(2):932-42. PubMed ID: 23267695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freezing or wrapping: the role of particle size in the mechanism of nanoparticle-biomembrane interaction.
    Zhang S; Nelson A; Beales PA
    Langmuir; 2012 Sep; 28(35):12831-7. PubMed ID: 22717012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of geometric nanoparticle rotation on cellular internalization process.
    Yang K; Yuan B; Ma YQ
    Nanoscale; 2013 Sep; 5(17):7998-8006. PubMed ID: 23863854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How tubular aggregates interact with biomembranes: wrapping, fusion and pearling.
    Yue T; Xu Y; Sun M; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jan; 18(2):1082-91. PubMed ID: 26659809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC; Ricci M; Silva PH; Andreozzi P; Reguera J; Voïtchovsky K; Stellacci F; Alexander-Katz A
    Nat Commun; 2014 Jul; 5():4482. PubMed ID: 25042518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC; Alexander-Katz A
    Soft Matter; 2015 Apr; 11(16):3165-75. PubMed ID: 25757187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal-controlled cellular uptake of "hot" nanoparticles.
    Chen H; Dong X; Ou L; Ma C; Yuan B; Yang K
    Nanoscale; 2023 Aug; 15(30):12718-12727. PubMed ID: 37470374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding receptor-mediated endocytosis of elastic nanoparticles through coarse grained molecular dynamic simulation.
    Shen Z; Ye H; Li Y
    Phys Chem Chem Phys; 2018 Jun; 20(24):16372-16385. PubMed ID: 29445792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular modeling of membrane tube pearling and the effect of nanoparticle adsorption.
    Yue T; Zhang X; Huang F
    Phys Chem Chem Phys; 2014 Jun; 16(22):10799-809. PubMed ID: 24760327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distribution of functionalized gold nanoparticles between water and lipid bilayers as model cell membranes.
    Hou WC; Moghadam BY; Corredor C; Westerhoff P; Posner JD
    Environ Sci Technol; 2012 Feb; 46(3):1869-76. PubMed ID: 22242832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adhesion, intake, and release of nanoparticles by lipid bilayers.
    Burgess S; Wang Z; Vishnyakov A; Neimark AV
    J Colloid Interface Sci; 2020 Mar; 561():58-70. PubMed ID: 31812867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane-mediated interactions between nanoparticles on a substrate.
    Liang Q; Chen QH; Ma YQ
    J Phys Chem B; 2010 Apr; 114(16):5359-64. PubMed ID: 20369863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer simulation study of nanoparticle interaction with a lipid membrane under mechanical stress.
    Lai K; Wang B; Zhang Y; Zheng Y
    Phys Chem Chem Phys; 2013 Jan; 15(1):270-8. PubMed ID: 23165312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MD simulation study of direct permeation of a nanoparticle across the cell membrane under an external electric field.
    Shimizu K; Nakamura H; Watano S
    Nanoscale; 2016 Jun; 8(23):11897-906. PubMed ID: 27241464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.