These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24652510)

  • 1. Continuum approaches to understanding ion and peptide interactions with the membrane.
    Latorraca NR; Callenberg KM; Boyle JP; Grabe M
    J Membr Biol; 2014 May; 247(5):395-408. PubMed ID: 24652510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuum method for determining membrane protein insertion energies and the problem of charged residues.
    Choe S; Hecht KA; Grabe M
    J Gen Physiol; 2008 Jun; 131(6):563-73. PubMed ID: 18474636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of hydrophobic peptides with lipid bilayers: Monte Carlo simulations with M2delta.
    Kessel A; Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3431-44. PubMed ID: 14645040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Continuum Approaches for Determining Protein-Induced Membrane Deformations.
    Argudo D; Bethel NP; Marcoline FV; Wolgemuth CW; Grabe M
    Biophys J; 2017 May; 112(10):2159-2172. PubMed ID: 28538153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring peptide-membrane interactions with coarse-grained MD simulations.
    Hall BA; Chetwynd AP; Sansom MS
    Biophys J; 2011 Apr; 100(8):1940-8. PubMed ID: 21504730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptide partitioning properties from direct insertion studies.
    Ulmschneider MB; Smith JC; Ulmschneider JP
    Biophys J; 2010 Jun; 98(12):L60-2. PubMed ID: 20550886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane bending is critical for the stability of voltage sensor segments in the membrane.
    Callenberg KM; Latorraca NR; Grabe M
    J Gen Physiol; 2012 Jul; 140(1):55-68. PubMed ID: 22732310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of cationic-hydrophobic peptides with lipid bilayers: a Monte Carlo simulation method.
    Shental-Bechor D; Haliloglu T; Ben-Tal N
    Biophys J; 2007 Sep; 93(6):1858-71. PubMed ID: 17496025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrostatics of deformable lipid membranes.
    Vorobyov I; Bekker B; Allen TW
    Biophys J; 2010 Jun; 98(12):2904-13. PubMed ID: 20550903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation thermodynamics of linear and cyclic nonaarginine into model DPPC bilayer via coarse-grained molecular dynamics simulation: implications of pore formation and nonadditivity.
    Hu Y; Liu X; Sinha SK; Patel S
    J Phys Chem B; 2014 Mar; 118(10):2670-82. PubMed ID: 24506488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Lys to Glu mutations in GsMTx4 on membrane binding, peptide orientation, and self-association propensity, as analyzed by molecular dynamics simulations.
    Nishizawa K; Nishizawa M; Gnanasambandam R; Sachs F; Sukharev SI; Suchyna TM
    Biochim Biophys Acta; 2015 Nov; 1848(11 Pt A):2767-78. PubMed ID: 26342676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape.
    Sodt AJ; Pastor RW
    Biophys J; 2014 May; 106(9):1958-69. PubMed ID: 24806928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implicit membrane treatment of buried charged groups: application to peptide translocation across lipid bilayers.
    Lazaridis T; Leveritt JM; PeBenito L
    Biochim Biophys Acta; 2014 Sep; 1838(9):2149-59. PubMed ID: 24525075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient molecular mechanics simulations of the folding, orientation, and assembly of peptides in lipid bilayers using an implicit atomic solvation model.
    Bordner AJ; Zorman B; Abagyan R
    J Comput Aided Mol Des; 2011 Oct; 25(10):895-911. PubMed ID: 21904908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics study of the membrane interaction of a membranotropic dengue virus C protein-derived peptide.
    Fajardo-Sánchez E; Galiano V; Villalaín J
    J Biomol Struct Dyn; 2017 May; 35(6):1283-1294. PubMed ID: 27098294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energetics and self-assembly of amphipathic peptide pores in lipid membranes.
    Zemel A; Fattal DR; Ben-Shaul A
    Biophys J; 2003 Apr; 84(4):2242-55. PubMed ID: 12668433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Outer membrane phospholipase A in phospholipid bilayers: a model system for concerted computational and experimental investigations of amino acid side chain partitioning into lipid bilayers.
    Fleming PJ; Freites JA; Moon CP; Tobias DJ; Fleming KG
    Biochim Biophys Acta; 2012 Feb; 1818(2):126-34. PubMed ID: 21816133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.