These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24652683)
1. Physico-chemical properties and in vitro response of silk fibroin from various domestic races. Kaewprasit K; Promboon A; Kanokpanont S; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1639-47. PubMed ID: 24652683 [TBL] [Abstract][Full Text] [Related]
2. Silk fibroin/chitosan thin film promotes osteogenic and adipogenic differentiation of rat bone marrow-derived mesenchymal stem cells. Li DW; He J; He FL; Liu YL; Liu YY; Ye YJ; Deng X; Yin DC J Biomater Appl; 2018 Apr; 32(9):1164-1173. PubMed ID: 29471713 [TBL] [Abstract][Full Text] [Related]
3. Attachment and growth of human bone marrow derived mesenchymal stem cells on regenerated antheraea pernyi silk fibroin films. Luan XY; Wang Y; Duan X; Duan QY; Li MZ; Lu SZ; Zhang HX; Zhang XG Biomed Mater; 2006 Dec; 1(4):181-7. PubMed ID: 18458403 [TBL] [Abstract][Full Text] [Related]
4. Silk fibroin film from non-mulberry tropical tasar silkworms: A novel substrate for in vitro fibroblast culture. Acharya C; Ghosh SK; Kundu SC Acta Biomater; 2009 Jan; 5(1):429-37. PubMed ID: 18676188 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of the properties of silk fibroin films from the non-mulberry silkworm Samia cynthia ricini for biomaterial design. Mai-ngam K; Boonkitpattarakul K; Jaipaew J; Mai-ngam B J Biomater Sci Polym Ed; 2011; 22(15):2001-22. PubMed ID: 21029516 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
7. A comparison of Thai silk fibroin-based and chitosan-based materials on in vitro biocompatibility for bone substitutes. Vachiraroj N; Ratanavaraporn J; Damrongsakkul S; Pichyangkura R; Banaprasert T; Kanokpanont S Int J Biol Macromol; 2009 Dec; 45(5):470-7. PubMed ID: 19660495 [TBL] [Abstract][Full Text] [Related]
8. Silk fibroin coated TiO Saha S; Pramanik K; Biswas A Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():109982. PubMed ID: 31546427 [TBL] [Abstract][Full Text] [Related]
9. Silk fibroin films with embedded magnetic nanoparticles: evaluation of the magneto-mechanical stimulation effect on osteogenic differentiation of stem cells. Del Bianco L; Spizzo F; Yang Y; Greco G; Gatto ML; Barucca G; Pugno NM; Motta A Nanoscale; 2022 Oct; 14(39):14558-14574. PubMed ID: 36149382 [TBL] [Abstract][Full Text] [Related]
10. Polydopamine-Coated Wang J; Chen Y; Zhou G; Chen Y; Mao C; Yang M ACS Appl Mater Interfaces; 2019 Sep; 11(38):34736-34743. PubMed ID: 31518114 [TBL] [Abstract][Full Text] [Related]
11. Green process to prepare silk fibroin/gelatin biomaterial scaffolds. Lu Q; Zhang X; Hu X; Kaplan DL Macromol Biosci; 2010 Mar; 10(3):289-98. PubMed ID: 19924684 [TBL] [Abstract][Full Text] [Related]
12. Surface modification of silk fibroin with poly(ethylene glycol) for antiadhesion and antithrombotic applications. Vepari C; Matheson D; Drummy L; Naik R; Kaplan DL J Biomed Mater Res A; 2010 May; 93(2):595-606. PubMed ID: 19591236 [TBL] [Abstract][Full Text] [Related]
14. Surface modification of Thai silk fibroin scaffolds with gelatin and chitooligosaccharide for enhanced osteogenic differentiation of bone marrow-derived mesenchymal stem cells. Wongputtaraksa T; Ratanavaraporn J; Pichyangkura R; Damrongsakkul S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2307-15. PubMed ID: 23015285 [TBL] [Abstract][Full Text] [Related]
15. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor. Sinlapabodin S; Amornsudthiwat P; Damrongsakkul S; Kanokpanont S Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():960-70. PubMed ID: 26478392 [TBL] [Abstract][Full Text] [Related]
16. Enhanced osteogenic potential of human mesenchymal stem cells on electrospun nanofibrous scaffolds prepared from eri-tasar silk fibroin. Panda NN; Biswas A; Pramanik K; Jonnalagadda S J Biomed Mater Res B Appl Biomater; 2015 Jul; 103(5):971-82. PubMed ID: 25176408 [TBL] [Abstract][Full Text] [Related]
17. Bone morphogenetic protein-2 decorated silk fibroin films induce osteogenic differentiation of human bone marrow stromal cells. Karageorgiou V; Meinel L; Hofmann S; Malhotra A; Volloch V; Kaplan D J Biomed Mater Res A; 2004 Dec; 71(3):528-37. PubMed ID: 15478212 [TBL] [Abstract][Full Text] [Related]
19. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds. Mandal BB; Kundu SC Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292 [TBL] [Abstract][Full Text] [Related]
20. Directing osteogenesis of stem cells with hydroxyapatite precipitated electrospun eri-tasar silk fibroin nanofibrous scaffold. Panda N; Bissoyi A; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2014; 25(13):1440-57. PubMed ID: 25090157 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]