BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 24652694)

  • 1. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film.
    Lee YM; Jung B; Kim YH; Park AR; Han S; Choe WS; Yoo PJ
    Adv Mater; 2014 Jun; 26(23):3899-904. PubMed ID: 24652694
    [No Abstract]   [Full Text] [Related]  

  • 2. Selective ion penetration of graphene oxide membranes.
    Sun P; Zhu M; Wang K; Zhong M; Wei J; Wu D; Xu Z; Zhu H
    ACS Nano; 2013 Jan; 7(1):428-37. PubMed ID: 23214493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling surface mobility in interdiffusing polyelectrolyte multilayers.
    Yoo PJ; Zacharia NS; Doh J; Nam KT; Belcher AM; Hammond PT
    ACS Nano; 2008 Mar; 2(3):561-71. PubMed ID: 19206583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene sheets stabilized on genetically engineered M13 viral templates as conducting frameworks for hybrid energy-storage materials.
    Oh D; Dang X; Yi H; Allen MA; Xu K; Lee YJ; Belcher AM
    Small; 2012 Apr; 8(7):1006-11. PubMed ID: 22337601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical detection of metal ions using field-effect transistors based on micropatterned reduced graphene oxide films.
    Sudibya HG; He Q; Zhang H; Chen P
    ACS Nano; 2011 Mar; 5(3):1990-4. PubMed ID: 21338084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.
    Zhang S; Shao Y; Liao H; Engelhard MH; Yin G; Lin Y
    ACS Nano; 2011 Mar; 5(3):1785-91. PubMed ID: 21361350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-graphite oxide field-effect transistors.
    Standley B; Mendez A; Schmidgall E; Bockrath M
    Nano Lett; 2012 Mar; 12(3):1165-9. PubMed ID: 22380722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to create a highly ordered monolayer film of graphene nanosheets at the liquid-liquid interface.
    Biswas S; Drzal LT
    Nano Lett; 2009 Jan; 9(1):167-72. PubMed ID: 19113892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications.
    He Q; Sudibya HG; Yin Z; Wu S; Li H; Boey F; Huang W; Chen P; Zhang H
    ACS Nano; 2010 Jun; 4(6):3201-8. PubMed ID: 20441213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the size of graphene oxide sheets produced via the graphite oxide route.
    Pan S; Aksay IA
    ACS Nano; 2011 May; 5(5):4073-83. PubMed ID: 21469697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes.
    Modi A; Verma SK; Bellare J
    J Colloid Interface Sci; 2017 Oct; 504():86-100. PubMed ID: 28527829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring the layer-by-layer self-assembly of graphene and graphene oxide by spectroscopic ellipsometry.
    Zhou KG; Chang MJ; Wang HX; Xie YL; Zhang HL
    J Nanosci Nanotechnol; 2012 Jan; 12(1):508-12. PubMed ID: 22524011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An anti-clogging 3D porous membrane for sorting and patterning of micro-entities.
    Ranjan S; Selvan ST; Zhang Y
    Adv Healthc Mater; 2012 May; 1(3):354-9. PubMed ID: 23184754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide.
    Zhao H; Wu L; Zhou Z; Zhang L; Chen H
    Phys Chem Chem Phys; 2013 Jun; 15(23):9084-92. PubMed ID: 23644556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of monolayer graphene oxide.
    Suk JW; Piner RD; An J; Ruoff RS
    ACS Nano; 2010 Nov; 4(11):6557-64. PubMed ID: 20942443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically tunable M13 phage films utilizing evaporating droplets.
    Alberts E; Warner C; Barnes E; Pilkiewicz K; Perkins E; Poda A
    Colloids Surf B Biointerfaces; 2018 Jan; 161():210-218. PubMed ID: 29080505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrathin planar graphene supercapacitors.
    Yoo JJ; Balakrishnan K; Huang J; Meunier V; Sumpter BG; Srivastava A; Conway M; Reddy AL; Yu J; Vajtai R; Ajayan PM
    Nano Lett; 2011 Apr; 11(4):1423-7. PubMed ID: 21381713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibers of reduced graphene oxide nanoribbons.
    Jang EY; Carretero-González J; Choi A; Kim WJ; Kozlov ME; Kim T; Kang TJ; Baek SJ; Kim DW; Park YW; Baughman RH; Kim YH
    Nanotechnology; 2012 Jun; 23(23):235601. PubMed ID: 22595866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene nanoribbon thin films using layer-by-layer assembly.
    Zhu Y; Tour JM
    Nano Lett; 2010 Nov; 10(11):4356-62. PubMed ID: 20949936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks.
    Courchesne NM; Klug MT; Chen PY; Kooi SE; Yun DS; Hong N; Fang NX; Belcher AM; Hammond PT
    Adv Mater; 2014 Jun; 26(21):3398-404. PubMed ID: 24648015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.