These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 2465272)
1. Pore formation by the Escherichia coli hemolysin: evidence for an association-dissociation equilibrium of the pore-forming aggregates. Benz R; Schmid A; Wagner W; Goebel W Infect Immun; 1989 Mar; 57(3):887-95. PubMed ID: 2465272 [TBL] [Abstract][Full Text] [Related]
2. Pore-forming properties of the plasmid-encoded hemolysin of enterohemorrhagic Escherichia coli O157:H7. Schmidt H; Maier E; Karch H; Benz R Eur J Biochem; 1996 Oct; 241(2):594-601. PubMed ID: 8917461 [TBL] [Abstract][Full Text] [Related]
3. HlyA hemolysin of Vibrio cholerae O1 biotype E1 Tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels. Menzl K; Maier E; Chakraborty T; Benz R Eur J Biochem; 1996 Sep; 240(3):646-54. PubMed ID: 8856066 [TBL] [Abstract][Full Text] [Related]
4. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii. Benz R; Hardie KR; Hughes C Eur J Biochem; 1994 Mar; 220(2):339-47. PubMed ID: 7510229 [TBL] [Abstract][Full Text] [Related]
5. Haemolysin of Escherichia coli: comparison of pore-forming properties between chromosome and plasmid-encoded haemolysins. Benz R; Döbereiner A; Ludwig A; Goebel W FEMS Microbiol Immunol; 1992 Sep; 5(1-3):55-62. PubMed ID: 1384597 [TBL] [Abstract][Full Text] [Related]
6. Adenylate cyclase toxin (CyaA) of Bordetella pertussis. Evidence for the formation of small ion-permeable channels and comparison with HlyA of Escherichia coli. Benz R; Maier E; Ladant D; Ullmann A; Sebo P J Biol Chem; 1994 Nov; 269(44):27231-9. PubMed ID: 7525549 [TBL] [Abstract][Full Text] [Related]
7. Electrical properties and molecular architecture of the channel formed by Escherichia coli hemolysin in planar lipid membranes. Ropele M; Menestrina G Biochim Biophys Acta; 1989 Oct; 985(1):9-18. PubMed ID: 2477066 [TBL] [Abstract][Full Text] [Related]
8. Escherichia coli haemolysin forms voltage-dependent ion channels in lipid membranes. Menestrina G; Mackman N; Holland IB; Bhakdi S Biochim Biophys Acta; 1987 Nov; 905(1):109-17. PubMed ID: 2445378 [TBL] [Abstract][Full Text] [Related]
9. Aerolysin of Aeromonas sobria: evidence for formation of ion-permeable channels and comparison with alpha-toxin of Staphylococcus aureus. Chakraborty T; Schmid A; Notermans S; Benz R Infect Immun; 1990 Jul; 58(7):2127-32. PubMed ID: 1694819 [TBL] [Abstract][Full Text] [Related]
10. The effects of calcium and other polyvalent cations on channel formation by Escherichia coli alpha-hemolysin in red blood cells and lipid bilayer membranes. Döbereiner A; Schmid A; Ludwig A; Goebel W; Benz R Eur J Biochem; 1996 Sep; 240(2):454-60. PubMed ID: 8841412 [TBL] [Abstract][Full Text] [Related]
11. Voltage-dependent gating properties of the channel formed by E. coli hemolysin in planar lipid membranes. Menestrina G; Ropele M Biosci Rep; 1989 Aug; 9(4):465-73. PubMed ID: 2686776 [TBL] [Abstract][Full Text] [Related]
12. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S; Quigley EP; Crumrine DS Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442 [TBL] [Abstract][Full Text] [Related]
13. Channel-forming activity and channel size of the RTX toxins ApxI, ApxII, and ApxIII of Actinobacillus pleuropneumoniae. Maier E; Reinhard N; Benz R; Frey J Infect Immun; 1996 Nov; 64(11):4415-23. PubMed ID: 8890186 [TBL] [Abstract][Full Text] [Related]
14. The deletion of several amino acid stretches of Escherichia coli alpha-hemolysin (HlyA) suggests that the channel-forming domain contains beta-strands. Benz R; Maier E; Bauer S; Ludwig A PLoS One; 2014; 9(12):e112248. PubMed ID: 25463653 [TBL] [Abstract][Full Text] [Related]
15. Formation of large, ion-permeable membrane channels by the matrix protein (porin) of Escherichia coli. Benz R; Janko K; Boos W; Läuger P Biochim Biophys Acta; 1978 Aug; 511(3):305-19. PubMed ID: 356882 [TBL] [Abstract][Full Text] [Related]
16. TolC of Escherichia coli functions as an outer membrane channel. Benz R; Maier E; Gentschev I Zentralbl Bakteriol; 1993 Apr; 278(2-3):187-96. PubMed ID: 7688606 [TBL] [Abstract][Full Text] [Related]
17. Characterization of the channel properties of tetanus toxin in planar lipid bilayers. Gambale F; Montal M Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552 [TBL] [Abstract][Full Text] [Related]
18. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine. Schmid A; Benz R; Just I; Aktories K J Biol Chem; 1994 Jun; 269(24):16706-11. PubMed ID: 7515883 [TBL] [Abstract][Full Text] [Related]
19. Importance of polarity of the α4-α5 loop residue-Asn(166) in the pore-forming domain of the Bacillus thuringiensis Cry4Ba toxin: implications for ion permeation and pore opening. Juntadech T; Kanintronkul Y; Kanchanawarin C; Katzenmeier G; Angsuthanasombat C Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):319-27. PubMed ID: 24120447 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the nucleoside-binding site inside the Tsx channel of Escherichia coli outer membrane. Reconstitution experiments with lipid bilayer membranes. Benz R; Schmid A; Maier C; Bremer E Eur J Biochem; 1988 Oct; 176(3):699-705. PubMed ID: 2458926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]