These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24652755)

  • 1. Solvent-assisted linker exchange: an alternative to the de novo synthesis of unattainable metal-organic frameworks.
    Karagiaridi O; Bury W; Mondloch JE; Hupp JT; Farha OK
    Angew Chem Int Ed Engl; 2014 Apr; 53(18):4530-40. PubMed ID: 24652755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective Solvent-Assisted Linker Exchange (SALE) in a Series of Zeolitic Imidazolate Frameworks.
    Lalonde MB; Mondloch JE; Deria P; Sarjeant AA; Al-Juaid SS; Osman OI; Farha OK; Hupp JT
    Inorg Chem; 2015 Aug; 54(15):7142-4. PubMed ID: 26192323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications.
    Islamoglu T; Goswami S; Li Z; Howarth AJ; Farha OK; Hupp JT
    Acc Chem Res; 2017 Apr; 50(4):805-813. PubMed ID: 28177217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement.
    Deria P; Mondloch JE; Karagiaridi O; Bury W; Hupp JT; Farha OK
    Chem Soc Rev; 2014 Aug; 43(16):5896-912. PubMed ID: 24723093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct and post-synthesis incorporation of chiral metallosalen catalysts into metal-organic frameworks for asymmetric organic transformations.
    Xi W; Liu Y; Xia Q; Li Z; Cui Y
    Chemistry; 2015 Sep; 21(36):12581-5. PubMed ID: 26200925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and Mechanistic Differences in Mixed-Linker Zeolitic Imidazolate Framework Synthesis by Solvent Assisted Linker Exchange and de Novo Routes.
    Jayachandrababu KC; Sholl DS; Nair S
    J Am Chem Soc; 2017 Apr; 139(16):5906-5915. PubMed ID: 28388071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-organic frameworks with functional pores for recognition of small molecules.
    Chen B; Xiang S; Qian G
    Acc Chem Res; 2010 Aug; 43(8):1115-24. PubMed ID: 20450174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent-assisted ligand exchange (SALE) for the enhancement of epoxide ring-opening reaction catalysis based on three amide-functionalized metal-organic frameworks.
    Gharib M; Esrafili L; Morsali A; Retailleau P
    Dalton Trans; 2019 Jun; 48(24):8803-8814. PubMed ID: 31134242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state NMR: a powerful tool for characterization of metal-organic frameworks.
    Sutrisno A; Huang Y
    Solid State Nucl Magn Reson; 2013 Feb; 49-50():1-11. PubMed ID: 23131545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the topology and functionality of metal-organic frameworks by ligand design.
    Zhao D; Timmons DJ; Yuan D; Zhou HC
    Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design, synthesis, purification, and activation of metal-organic framework materials.
    Farha OK; Hupp JT
    Acc Chem Res; 2010 Aug; 43(8):1166-75. PubMed ID: 20608672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface chemistry of metal-organic frameworks at the liquid-solid interface.
    Zacher D; Schmid R; Wöll C; Fischer RA
    Angew Chem Int Ed Engl; 2011 Jan; 50(1):176-99. PubMed ID: 21190182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasonic-Assisted Linker Exchange (USALE): A Novel Post-Synthesis Method for Controlling the Functionality, Porosity, and Morphology of MOFs.
    Razavi SAA; Morsali A
    Chemistry; 2019 Aug; 25(46):10876-10885. PubMed ID: 31209926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning the structure and function of metal-organic frameworks via linker design.
    Lu W; Wei Z; Gu ZY; Liu TF; Park J; Park J; Tian J; Zhang M; Zhang Q; Gentle T; Bosch M; Zhou HC
    Chem Soc Rev; 2014 Aug; 43(16):5561-93. PubMed ID: 24604071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of metal-organic frameworks through the postsynthetic transformation of olefin side groups.
    Hindelang K; Kronast A; Vagin SI; Rieger B
    Chemistry; 2013 Jun; 19(25):8244-52. PubMed ID: 23640916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function.
    Dey C; Kundu T; Biswal BP; Mallick A; Banerjee R
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Feb; 70(Pt 1):3-10. PubMed ID: 24441122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative synthetic approaches for metal-organic frameworks: transformation from solid matters.
    Zhan G; Zeng HC
    Chem Commun (Camb); 2016 Dec; 53(1):72-81. PubMed ID: 27738676
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials.
    Kirchon A; Feng L; Drake HF; Joseph EA; Zhou HC
    Chem Soc Rev; 2018 Dec; 47(23):8611-8638. PubMed ID: 30234863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions.
    Allendorf MD; Schwartzberg A; Stavila V; Talin AA
    Chemistry; 2011 Oct; 17(41):11372-88. PubMed ID: 21932243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic frameworks: from molecules/metal ions to crystals to superstructures.
    Carné-Sánchez A; Imaz I; Stylianou KC; Maspoch D
    Chemistry; 2014 Apr; 20(18):5192-201. PubMed ID: 24643892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.