BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

578 related articles for article (PubMed ID: 24652947)

  • 21. 5'-AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle.
    Frøsig C; Jørgensen SB; Hardie DG; Richter EA; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2004 Mar; 286(3):E411-7. PubMed ID: 14613924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetic and metabolic effects on skeletal muscle AMPK in young and older twins.
    Mortensen B; Poulsen P; Wegner L; Stender-Petersen KL; Ribel-Madsen R; Friedrichsen M; Birk JB; Vaag A; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E956-64. PubMed ID: 19671840
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Possible CaMKK-dependent regulation of AMPK phosphorylation and glucose uptake at the onset of mild tetanic skeletal muscle contraction.
    Jensen TE; Rose AJ; Jørgensen SB; Brandt N; Schjerling P; Wojtaszewski JF; Richter EA
    Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1308-17. PubMed ID: 17213473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise.
    Klein DK; Pilegaard H; Treebak JT; Jensen TE; Viollet B; Schjerling P; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1242-9. PubMed ID: 17711995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skeletal muscle AMP-activated protein kinase is essential for the metabolic response to exercise in vivo.
    Lee-Young RS; Griffee SR; Lynes SE; Bracy DP; Ayala JE; McGuinness OP; Wasserman DH
    J Biol Chem; 2009 Sep; 284(36):23925-34. PubMed ID: 19525228
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AMPKα2 deficiency uncovers time dependency in the regulation of contraction-induced palmitate and glucose uptake in mouse muscle.
    Abbott MJ; Bogachus LD; Turcotte LP
    J Appl Physiol (1985); 2011 Jul; 111(1):125-34. PubMed ID: 21551008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of AMPK in controlling metabolism and mitochondrial biogenesis during exercise.
    Marcinko K; Steinberg GR
    Exp Physiol; 2014 Dec; 99(12):1581-5. PubMed ID: 25261498
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-intensity contraction activates the alpha1-isoform of 5'-AMP-activated protein kinase in rat skeletal muscle.
    Toyoda T; Tanaka S; Ebihara K; Masuzaki H; Hosoda K; Sato K; Fushiki T; Nakao K; Hayashi T
    Am J Physiol Endocrinol Metab; 2006 Mar; 290(3):E583-90. PubMed ID: 16249251
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The regulation of skeletal muscle fatigability and mitochondrial function by chronically elevated interleukin-6.
    VanderVeen BN; Fix DK; Montalvo RN; Counts BR; Smuder AJ; Murphy EA; Koh HJ; Carson JA
    Exp Physiol; 2019 Mar; 104(3):385-397. PubMed ID: 30576589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exercise-induced AMPK activation and IL-6 muscle production are disturbed in adiponectin knockout mice.
    Diniz TA; Aquino Júnior JCJ; Mosele FC; Cabral-Santos C; Lima Junior EA; Teixeira AAS; Lira FS; Rosa Neto JC
    Cytokine; 2019 Jul; 119():71-80. PubMed ID: 30903866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, phenformin, and AICAR.
    Sakamoto K; Göransson O; Hardie DG; Alessi DR
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E310-7. PubMed ID: 15068958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise.
    Sylow L; Møller LLV; Kleinert M; D'Hulst G; De Groote E; Schjerling P; Steinberg GR; Jensen TE; Richter EA
    Diabetes; 2017 Jun; 66(6):1548-1559. PubMed ID: 28389470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved exercise capacity in cyclophilin-D knockout mice associated with enhanced oxygen utilization efficiency and augmented glucose uptake
    Radhakrishnan J; Baetiong A; Kaufman H; Huynh M; Leschinsky A; Fresquez A; White C; DiMario JX; Gazmuri RJ
    FASEB J; 2019 Oct; 33(10):11443-11457. PubMed ID: 31339770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.
    Le Guen M; Chaté V; Hininger-Favier I; Laillet B; Morio B; Pieroni G; Schlattner U; Pison C; Dubouchaud H
    Am J Physiol Endocrinol Metab; 2016 Feb; 310(3):E213-24. PubMed ID: 26646102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Whole body deletion of AMP-activated protein kinase {beta}2 reduces muscle AMPK activity and exercise capacity.
    Steinberg GR; O'Neill HM; Dzamko NL; Galic S; Naim T; Koopman R; Jørgensen SB; Honeyman J; Hewitt K; Chen ZP; Schertzer JD; Scott JW; Koentgen F; Lynch GS; Watt MJ; van Denderen BJ; Campbell DJ; Kemp BE
    J Biol Chem; 2010 Nov; 285(48):37198-209. PubMed ID: 20855892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise training in Tgα
    Grassi B; Majerczak J; Bardi E; Buso A; Comelli M; Chlopicki S; Guzik M; Mavelli I; Nieckarz Z; Salvadego D; Tyrankiewicz U; Skórka T; Bottinelli R; Zoladz JA; Pellegrino MA
    J Appl Physiol (1985); 2017 Aug; 123(2):326-336. PubMed ID: 28522765
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Constitutively active calcineurin in skeletal muscle increases endurance performance and mitochondrial respiratory capacity.
    Jiang LQ; Garcia-Roves PM; de Castro Barbosa T; Zierath JR
    Am J Physiol Endocrinol Metab; 2010 Jan; 298(1):E8-E16. PubMed ID: 19861587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress.
    McGee SL; Swinton C; Morrison S; Gaur V; Campbell DE; Jorgensen SB; Kemp BE; Baar K; Steinberg GR; Hargreaves M
    FASEB J; 2014 Aug; 28(8):3384-95. PubMed ID: 24732133
    [TBL] [Abstract][Full Text] [Related]  

  • 39. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient?
    Jensen TE; Wojtaszewski JF; Richter EA
    Acta Physiol (Oxf); 2009 May; 196(1):155-74. PubMed ID: 19243572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle.
    Saleem A; Adhihetty PJ; Hood DA
    Physiol Genomics; 2009 Mar; 37(1):58-66. PubMed ID: 19106183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.