BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 24652999)

  • 1. Modular skeletal evolution in sticklebacks is controlled by additive and clustered quantitative trait Loci.
    Miller CT; Glazer AM; Summers BR; Blackman BK; Norman AR; Shapiro MD; Cole BL; Peichel CL; Schluter D; Kingsley DM
    Genetics; 2014 May; 197(1):405-20. PubMed ID: 24652999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic Dissection of a Supergene Implicates
    Erickson PA; Baek J; Hart JC; Cleves PA; Miller CT
    Genetics; 2018 Jun; 209(2):591-605. PubMed ID: 29593029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal spine evolution in threespine sticklebacks via a splicing change in MSX2A.
    Howes TR; Summers BR; Kingsley DM
    BMC Biol; 2017 Dec; 15(1):115. PubMed ID: 29212540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing.
    Glazer AM; Killingbeck EE; Mitros T; Rokhsar DS; Miller CT
    G3 (Bethesda); 2015 Jun; 5(7):1463-72. PubMed ID: 26044731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partially repeatable genetic basis of benthic adaptation in threespine sticklebacks.
    Erickson PA; Glazer AM; Killingbeck EE; Agoglia RM; Baek J; Carsanaro SM; Lee AM; Cleves PA; Schluter D; Miller CT
    Evolution; 2016 Apr; 70(4):887-902. PubMed ID: 26947264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two developmentally temporal quantitative trait loci underlie convergent evolution of increased branchial bone length in sticklebacks.
    Erickson PA; Glazer AM; Cleves PA; Smith AS; Miller CT
    Proc Biol Sci; 2014 Aug; 281(1788):20140822. PubMed ID: 24966315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Longer or shorter spines: Reciprocal trait evolution in stickleback via triallelic regulatory changes in
    Roberts Kingman GA; Lee D; Jones FC; Desmet D; Bell MA; Kingsley DM
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34321354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic architecture of variation in the lateral line sensory system of threespine sticklebacks.
    Wark AR; Mills MG; Dang LH; Chan YF; Jones FC; Brady SD; Absher DM; Grimwood J; Schmutz J; Myers RM; Kingsley DM; Peichel CL
    G3 (Bethesda); 2012 Sep; 2(9):1047-56. PubMed ID: 22973542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic and molecular architecture of phenotypic diversity in sticklebacks.
    Peichel CL; Marques DA
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threespine Stickleback: A Model System For Evolutionary Genomics.
    Reid K; Bell MA; Veeramah KR
    Annu Rev Genomics Hum Genet; 2021 Aug; 22():357-383. PubMed ID: 33909459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic architecture of parallel pelvic reduction in ninespine sticklebacks.
    Shikano T; Laine VN; Herczeg G; Vilkki J; Merilä J
    G3 (Bethesda); 2013 Oct; 3(10):1833-42. PubMed ID: 23979937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mapping of natural variation in schooling tendency in the threespine stickleback.
    Greenwood AK; Ardekani R; McCann SR; Dubin ME; Sullivan A; Bensussen S; Tavaré S; Peichel CL
    G3 (Bethesda); 2015 Feb; 5(5):761-9. PubMed ID: 25717151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of major and minor QTL for ecologically important morphological traits in three-spined sticklebacks (Gasterosteus aculeatus).
    Liu J; Shikano T; Leinonen T; Cano JM; Li MH; Merilä J
    G3 (Bethesda); 2014 Apr; 4(4):595-604. PubMed ID: 24531726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extent of QTL Reuse During Repeated Phenotypic Divergence of Sympatric Threespine Stickleback.
    Conte GL; Arnegard ME; Best J; Chan YF; Jones FC; Kingsley DM; Schluter D; Peichel CL
    Genetics; 2015 Nov; 201(3):1189-200. PubMed ID: 26384359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissection and Flat-mounting of the Threespine Stickleback Branchial Skeleton.
    Ellis NA; Miller CT
    J Vis Exp; 2016 May; (111):. PubMed ID: 27213248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic basis of divergent pigment patterns in juvenile threespine sticklebacks.
    Greenwood AK; Jones FC; Chan YF; Brady SD; Absher DM; Grimwood J; Schmutz J; Myers RM; Kingsley DM; Peichel CL
    Heredity (Edinb); 2011 Aug; 107(2):155-66. PubMed ID: 21304547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The genomic basis of adaptive evolution in threespine sticklebacks.
    Jones FC; Grabherr MG; Chan YF; Russell P; Mauceli E; Johnson J; Swofford R; Pirun M; Zody MC; White S; Birney E; Searle S; Schmutz J; Grimwood J; Dickson MC; Myers RM; Miller CT; Summers BR; Knecht AK; Brady SD; Zhang H; Pollen AA; Howes T; Amemiya C; ; Baldwin J; Bloom T; Jaffe DB; Nicol R; Wilkinson J; Lander ES; Di Palma F; Lindblad-Toh K; Kingsley DM
    Nature; 2012 Apr; 484(7392):55-61. PubMed ID: 22481358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel developmental genetic features underlie stickleback gill raker evolution.
    Glazer AM; Cleves PA; Erickson PA; Lam AY; Miller CT
    Evodevo; 2014; 5():19. PubMed ID: 24851181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intronic enhancer of Bmp6 underlies evolved tooth gain in sticklebacks.
    Cleves PA; Hart JC; Agoglia RM; Jimenez MT; Erickson PA; Gai L; Miller CT
    PLoS Genet; 2018 Jun; 14(6):e1007449. PubMed ID: 29902209
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolving New Skeletal Traits by cis-Regulatory Changes in Bone Morphogenetic Proteins.
    Indjeian VB; Kingman GA; Jones FC; Guenther CA; Grimwood J; Schmutz J; Myers RM; Kingsley DM
    Cell; 2016 Jan; 164(1-2):45-56. PubMed ID: 26774823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.