BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 24653997)

  • 1. Dynamics of actinyl ions in water: a molecular dynamics simulation study.
    Tiwari SP; Rai N; Maginn EJ
    Phys Chem Chem Phys; 2014 May; 16(17):8060-9. PubMed ID: 24653997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and dynamics of uranyl(VI) and plutonyl(VI) cations in ionic liquid/water mixtures via molecular dynamics simulations.
    Maerzke KA; Goff GS; Runde WH; Schneider WF; Maginn EJ
    J Phys Chem B; 2013 Sep; 117(37):10852-68. PubMed ID: 23964666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A molecular dynamics investigation of actinyl-ligand speciation in aqueous solution.
    Newcomb K; Tiwari SP; Rai N; Maginn EJ
    Phys Chem Chem Phys; 2018 Jun; 20(23):15753-15763. PubMed ID: 29868654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and application of effective pairwise potentials for UO2(n+), NpO2(n+), PuO2(n+), and AmO2(n+) (n = 1, 2) ions with water.
    Pomogaev V; Tiwari SP; Rai N; Goff GS; Runde W; Schneider WF; Maginn EJ
    Phys Chem Chem Phys; 2013 Oct; 15(38):15954-63. PubMed ID: 23958801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A general study of actinyl hydration by molecular dynamics simulations using ab initio force fields.
    Pérez-Conesa S; Torrico F; Martínez JM; Pappalardo RR; Marcos ES
    J Chem Phys; 2019 Mar; 150(10):104504. PubMed ID: 30876364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol.
    Lucena AF; Odoh SO; Zhao J; Marçalo J; Schreckenbach G; Gibson JK
    Inorg Chem; 2014 Feb; 53(4):2163-70. PubMed ID: 24484174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force field development for actinyl ions via quantum mechanical calculations: an approach to account for many body solvation effects.
    Rai N; Tiwari SP; Maginn EJ
    J Phys Chem B; 2012 Sep; 116(35):10885-97. PubMed ID: 22857380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining EXAFS and Computer Simulations to Refine the Structural Description of Actinyls in Water.
    Pérez-Conesa S; Martínez JM; Pappalardo RR; Marcos ES
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33187172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulation study of distribution and dynamics of aqueous solutions of uranyl ions: the effect of varying temperature and concentration.
    Chopra M; Choudhury N
    Phys Chem Chem Phys; 2015 Nov; 17(41):27840-50. PubMed ID: 26439497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crown ether complexes of actinyls: a computational assessment of AnO
    Hu SX; Li WL; Dong L; Gibson JK; Li J
    Dalton Trans; 2017 Sep; 46(36):12354-12363. PubMed ID: 28891571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidation studies of dipositive actinide ions, An2+ (An = Th, U, Np, Pu, Am) in the gas phase: synthesis and characterization of the isolated uranyl, neptunyl, and plutonyl ions UO2(2+)(g), NpO2(2+)(g), and PuO2(2+)(g).
    Gibson JK; Haire RG; Santos M; Marçalo J; Pires de Matos A
    J Phys Chem A; 2005 Mar; 109(12):2768-81. PubMed ID: 16833590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mechanism of water exchange in AmO2(H2O)5(2+) and in the isoelectronic UO2(H2O)5(+) and NpO2(H2O)5(2+) complexes as studied by quantum chemical methods.
    Vallet V; Privalov T; Wahlgren U; Grenthe I
    J Am Chem Soc; 2004 Jun; 126(25):7766-7. PubMed ID: 15212510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitivity of Solvation Environment to Oxidation State and Position in the Early Actinide Period.
    Clark AE; Samuels A; Wisuri K; Landstrom S; Saul T
    Inorg Chem; 2015 Jul; 54(13):6216-25. PubMed ID: 26091144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies.
    Atta-Fynn R; Bylaska EJ; Schenter GK; de Jong WA
    J Phys Chem A; 2011 May; 115(18):4665-77. PubMed ID: 21500828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, kinetics, and thermodynamics of the aqueous uranyl(VI) cation.
    Kerisit S; Liu C
    J Phys Chem A; 2013 Aug; 117(30):6421-32. PubMed ID: 23815284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics and structure of Ln(III)-aqua ions: a comparative molecular dynamics study using ab initio based flexible and polarizable model potentials.
    Villa A; Hess B; Saint-Martin H
    J Phys Chem B; 2009 May; 113(20):7270-81. PubMed ID: 19402691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical study of the inner-sphere disproportionation reaction mechanism of the pentavalent actinyl ions.
    Steele H; Taylor RJ
    Inorg Chem; 2007 Aug; 46(16):6311-8. PubMed ID: 17625833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration shell exchange dynamics during ion transfer across the liquid/liquid interface.
    Chorny I; Benjamin I
    J Phys Chem B; 2005 Sep; 109(34):16455-62. PubMed ID: 16853092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crown ether inclusion complexes of the early actinide elements, [AnO2(18-crown-6)]n+, An = U, Np, Pu and n = 1, 2: a relativistic density functional study.
    Shamov GA; Schreckenbach G; Martin RL; Hay PJ
    Inorg Chem; 2008 Mar; 47(5):1465-75. PubMed ID: 18225857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.