These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 24653998)

  • 1. Mechanotunable monatomic metal structures at graphene edges.
    Wei N; Chang C; Zhu H; Xu Z
    Phys Chem Chem Phys; 2014 Jun; 16(22):10295-300. PubMed ID: 24653998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interface structure and mechanics between graphene and metal substrates: a first-principles study.
    Xu Z; Buehler MJ
    J Phys Condens Matter; 2010 Dec; 22(48):485301. PubMed ID: 21406741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional extended lines of divacancy defects in graphene.
    Botello-Méndez AR; Declerck X; Terrones M; Terrones H; Charlier JC
    Nanoscale; 2011 Jul; 3(7):2868-72. PubMed ID: 21321755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trapping of metal atoms in the defects on graphene.
    Tang Y; Yang Z; Dai X
    J Chem Phys; 2011 Dec; 135(22):224704. PubMed ID: 22168716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies.
    Park S; Park C; Kim G
    J Chem Phys; 2014 Apr; 140(13):134706. PubMed ID: 24712807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional electrocatalytic hybrid carbon nanocables with highly active edges on their walls.
    Gusmão R; Sofer Z; Nováček M; Luxa J; Matějková S; Pumera M
    Nanoscale; 2016 Mar; 8(12):6700-11. PubMed ID: 26948579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxygen Intercalation of Graphene on Transition Metal Substrate: An Edge-Limited Mechanism.
    Ma L; Zeng XC; Wang J
    J Phys Chem Lett; 2015 Oct; 6(20):4099-105. PubMed ID: 26722784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Half metallicity and electronic structures in armchair BCN-hybrid nanoribbons.
    Liu ZM; Zhu Y; Yang ZQ
    J Chem Phys; 2011 Feb; 134(7):074708. PubMed ID: 21341870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic structure and transport properties of monatomic Fe chains in a vacuum and anchored to a graphene nanoribbon.
    Nguyen NB; García-Fuente A; Lebon A; Gallego LJ; Vega A
    J Phys Condens Matter; 2012 Nov; 24(45):455304. PubMed ID: 23092846
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling.
    He Y; Garnica M; Bischoff F; Ducke J; Bocquet ML; Batzill M; Auwärter W; Barth JV
    Nat Chem; 2017 Jan; 9(1):33-38. PubMed ID: 27995925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation of single-walled carbon nanotubes by interaction with graphene: a first-principles study.
    Wang X; Yang J; Li R; Jiang H; Li Y
    J Comput Chem; 2015 Apr; 36(10):717-22. PubMed ID: 25689637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interfacial coupling in rotational monolayer and bilayer graphene on Ru(0001) from first principles.
    Wang B; Bocquet ML
    Nanoscale; 2012 Aug; 4(15):4687-93. PubMed ID: 22735164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse and tunable electronic structures of single-layer metal phosphorus trichalcogenides for photocatalytic water splitting.
    Liu J; Li XB; Wang D; Lau WM; Peng P; Liu LM
    J Chem Phys; 2014 Feb; 140(5):054707. PubMed ID: 24511968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetotransport across the metal-graphene hybrid interface and its modulation by gate voltage.
    Chen JJ; Ke X; Van Tendeloo G; Meng J; Zhou YB; Liao ZM; Yu DP
    Nanoscale; 2015 Mar; 7(12):5516-24. PubMed ID: 25735487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene: powder, flakes, ribbons, and sheets.
    James DK; Tour JM
    Acc Chem Res; 2013 Oct; 46(10):2307-18. PubMed ID: 23276286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zigzag graphene nanoribbons with saturated edges.
    Kudin KN
    ACS Nano; 2008 Mar; 2(3):516-22. PubMed ID: 19206578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dispersions, novel nanomaterial sensors and nanoconjugates based on carbon nanotubes.
    Capek I
    Adv Colloid Interface Sci; 2009 Sep; 150(2):63-89. PubMed ID: 19573856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic ground state of higher acenes.
    Jiang DE; Dai S
    J Phys Chem A; 2008 Jan; 112(2):332-5. PubMed ID: 18085758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.