BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24654597)

  • 1. Carbon nanotube circuit integration up to sub-20 nm channel lengths.
    Shulaker MM; Van Rethy J; Wu TF; Liyanage LS; Wei H; Li Z; Pop E; Gielen G; Wong HS; Mitra S
    ACS Nano; 2014 Apr; 8(4):3434-43. PubMed ID: 24654597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Temperature Side Contact to Carbon Nanotube Transistors: Resistance Distributions Down to 10 nm Contact Length.
    Pitner G; Hills G; Llinas JP; Persson KM; Park R; Bokor J; Mitra S; Wong HP
    Nano Lett; 2019 Feb; 19(2):1083-1089. PubMed ID: 30677297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical-based material and process guidelines for design of carbon nanotube field-effect transistors in gigascale integrated circuits.
    Ghavami B; Raji M; Pedram H
    Nanotechnology; 2011 Aug; 22(34):345706. PubMed ID: 21811011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfO
    Lau C; Srimani T; Bishop MD; Hills G; Shulaker MM
    ACS Nano; 2018 Nov; 12(11):10924-10931. PubMed ID: 30285415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube computer.
    Shulaker MM; Hills G; Patil N; Wei H; Chen HY; Wong HS; Mitra S
    Nature; 2013 Sep; 501(7468):526-30. PubMed ID: 24067711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis-Free Carbon Nanotube Field-Effect Transistors.
    Park RS; Hills G; Sohn J; Mitra S; Shulaker MM; Wong HP
    ACS Nano; 2017 May; 11(5):4785-4791. PubMed ID: 28463503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors.
    Franklin AD; Farmer DB; Haensch W
    ACS Nano; 2014 Jul; 8(7):7333-9. PubMed ID: 24999536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long term investigations of carbon nanotube transistors encapsulated by atomic-layer-deposited Al(2)O(3) for sensor applications.
    Helbling T; Hierold C; Roman C; Durrer L; Mattmann M; Bright VM
    Nanotechnology; 2009 Oct; 20(43):434010. PubMed ID: 19801765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modern microprocessor built from complementary carbon nanotube transistors.
    Hills G; Lau C; Wright A; Fuller S; Bishop MD; Srimani T; Kanhaiya P; Ho R; Amer A; Stein Y; Murphy D; Arvind ; Chandrakasan A; Shulaker MM
    Nature; 2019 Aug; 572(7771):595-602. PubMed ID: 31462796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length scaling of carbon nanotube electric and photo diodes down to sub-50 nm.
    Xu H; Wang S; Zhang Z; Peng LM
    Nano Lett; 2014 Sep; 14(9):5382-9. PubMed ID: 25115287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Carbon Nanotube Thin-Film Transistor Technology.
    Peng LM
    ACS Nano; 2023 Nov; 17(22):22156-22166. PubMed ID: 37955303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Length scaling of carbon nanotube transistors.
    Franklin AD; Chen Z
    Nat Nanotechnol; 2010 Dec; 5(12):858-62. PubMed ID: 21102468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotubes for Radiation-Tolerant Electronics.
    Kanhaiya PS; Yu A; Netzer R; Kemp W; Doyle D; Shulaker MM
    ACS Nano; 2021 Nov; 15(11):17310-17318. PubMed ID: 34704446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems.
    Liu L; Ding L; Zhong D; Han J; Wang S; Meng Q; Qiu C; Zhang X; Peng LM; Zhang Z
    ACS Nano; 2019 Feb; 13(2):2526-2535. PubMed ID: 30694653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.
    Suriyasena Liyanage L; Xu X; Pitner G; Bao Z; Wong HS
    Nano Lett; 2014; 14(4):1884-90. PubMed ID: 24628497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sub-10 nm carbon nanotube transistor.
    Franklin AD; Luisier M; Han SJ; Tulevski G; Breslin CM; Gignac L; Lundstrom MS; Haensch W
    Nano Lett; 2012 Feb; 12(2):758-62. PubMed ID: 22260387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Power optimized variation aware dual-threshold SRAM cell design technique.
    Islam A; Hasan M
    Nanotechnol Sci Appl; 2011; 4():25-33. PubMed ID: 24198484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Printed, sub-3V digital circuits on plastic from aqueous carbon nanotube inks.
    Ha M; Xia Y; Green AA; Zhang W; Renn MJ; Kim CH; Hersam MC; Frisbie CD
    ACS Nano; 2010 Aug; 4(8):4388-95. PubMed ID: 20583780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change in carrier type in high-k gate carbon nanotube field-effect transistors by interface fixed charges.
    Moriyama N; Ohno Y; Kitamura T; Kishimoto S; Mizutani T
    Nanotechnology; 2010 Apr; 21(16):165201. PubMed ID: 20348598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.