These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24654598)

  • 21. Multifunctional atomic force microscope cantilevers with Lorentz force actuation and self-heating capability.
    Somnath S; Liu JO; Bakir M; Prater CB; King WP
    Nanotechnology; 2014 Oct; 25(39):395501. PubMed ID: 25189800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal mapping of a scanning thermal microscopy tip.
    Jóźwiak G; Wielgoszewski G; Gotszalk T; Kępiński L
    Ultramicroscopy; 2013 Oct; 133():80-7. PubMed ID: 23933596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes.
    Wilson AA; Borca-Tasciuc T
    Rev Sci Instrum; 2017 Jul; 88(7):074903. PubMed ID: 28764517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.
    Dickenson NE; Erickson ES; Mooren OL; Dunn RC
    Rev Sci Instrum; 2007 May; 78(5):053712. PubMed ID: 17552830
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative measurement with scanning thermal microscope by preventing the distortion due to the heat transfer through the air.
    Kim K; Chung J; Hwang G; Kwon O; Lee JS
    ACS Nano; 2011 Nov; 5(11):8700-9. PubMed ID: 21999681
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cantilever arrays with self-aligned nanotips of uniform height.
    Koelmans WW; Peters T; Berenschot E; de Boer MJ; Siekman MH; Abelmann L
    Nanotechnology; 2012 Apr; 23(13):135301. PubMed ID: 22418861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved controlled atmosphere high temperature scanning probe microscope.
    Hansen KV; Wu Y; Jacobsen T; Mogensen MB; Theil Kuhn L
    Rev Sci Instrum; 2013 Jul; 84(7):073701. PubMed ID: 23902070
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A heater-integrated scanning probe microscopy probe array with different tip radii for study of micro-nanosize effects on silicon-tip/polymer-film friction.
    Bao H; Li X
    Rev Sci Instrum; 2008 Mar; 79(3):033701. PubMed ID: 18377009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting and managing heat dissipation from a neural probe.
    Smith AN; Christian MP; Firebaugh SL; Cooper GW; Jamieson BG
    Biomed Microdevices; 2015 Aug; 17(4):81. PubMed ID: 26223563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A noncontact thermal microprobe for local thermal conductivity measurement.
    Zhang Y; Castillo EE; Mehta RJ; Ramanath G; Borca-Tasciuc T
    Rev Sci Instrum; 2011 Feb; 82(2):024902. PubMed ID: 21361625
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative thermal microscopy using thermoelectric probe in passive mode.
    Bontempi A; Thiery L; Teyssieux D; Briand D; Vairac P
    Rev Sci Instrum; 2013 Oct; 84(10):103703. PubMed ID: 24182115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method.
    Chung J; Kim K; Hwang G; Kwon O; Jung S; Lee J; Lee JW; Kim GT
    Rev Sci Instrum; 2010 Nov; 81(11):114901. PubMed ID: 21133490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of viscosity and density of viscous liquids determined from thermal noise spectra of uncalibrated atomic force microscope cantilevers.
    McLoughlin N; Lee SL; Hähner G
    Lab Chip; 2007 Aug; 7(8):1057-61. PubMed ID: 17653349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient thermal dissipation method for xylem sap flow measurement: implementation with a single probe.
    Do FC; Isarangkool Na Ayutthaya S; Rocheteau A
    Tree Physiol; 2011 Apr; 31(4):369-80. PubMed ID: 21498407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements.
    Paudel I; Kanety T; Cohen S
    Tree Physiol; 2013 Sep; 33(9):986-1001. PubMed ID: 24128850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial differentiation of sub-micrometer domains in a poly(hydroxyalkanoate) copolymer using instrumentation that combines atomic force microscopy (AFM) and infrared (IR) spectroscopy.
    Marcott C; Lo M; Kjoller K; Prater C; Noda I
    Appl Spectrosc; 2011 Oct; 65(10):1145-50. PubMed ID: 21986074
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calibration of atomic force microscope cantilevers using standard and inverted static methods assisted by FIB-milled spatial markers.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Nanotechnology; 2013 Jan; 24(1):015710. PubMed ID: 23220746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.