These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 24654605)

  • 1. Do persistent organic pollutants reach a thermodynamic equilibrium in the global environment?
    Schenker S; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2014 May; 48(9):5017-24. PubMed ID: 24654605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remoteness from sources of persistent organic pollutants in the multi-media global environment.
    Göktaş RK; MacLeod M
    Environ Pollut; 2016 Oct; 217():33-41. PubMed ID: 26775726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expanding the applicability of multimedia fate models to polar organic chemicals.
    Breivik K; Wania F
    Environ Sci Technol; 2003 Nov; 37(21):4934-43. PubMed ID: 14620821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and exploration of an organic contaminant fate model using poly-parameter linear free energy relationships.
    Brown TN; Wania F
    Environ Sci Technol; 2009 Sep; 43(17):6676-83. PubMed ID: 19764234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic?
    Su Y; Wania F
    Environ Sci Technol; 2005 Sep; 39(18):7185-93. PubMed ID: 16201647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating overall persistence and long-range transport potential of persistent organic pollutants: a comparison of seven multimedia mass balance models and atmospheric transport models.
    Hollander A; Scheringer M; Shatalov V; Mantseva E; Sweetman A; Roemer M; Baart A; Suzuki N; Wegmann F; van de Meent D
    J Environ Monit; 2008 Oct; 10(10):1139-47. PubMed ID: 18843390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-range transport of organic chemicals in the environment.
    Scheringer M
    Environ Toxicol Chem; 2009 Apr; 28(4):677-90. PubMed ID: 19391691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical fate, latitudinal distribution and long-range transport of cyclic volatile methylsiloxanes in the global environment: a modeling assessment.
    Xu S; Wania F
    Chemosphere; 2013 Oct; 93(5):835-43. PubMed ID: 23177006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicompartmental fate of persistent substances. Comparison of predictions from multi-media box models and a multicompartment chemistry-atmospheric transport model.
    Lammel G; Klöpffer W; Semeena VS; Schmidt E; Leip A
    Environ Sci Pollut Res Int; 2007 May; 14(3):153-65. PubMed ID: 17561773
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanism of mountain cold-trapping of organic chemicals.
    Wania F; Westgate JN
    Environ Sci Technol; 2008 Dec; 42(24):9092-8. PubMed ID: 19174876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A thermodynamic approach for assessing the environmental exposure of chemicals absorbed to microplastic.
    Gouin T; Roche N; Lohmann R; Hodges G
    Environ Sci Technol; 2011 Feb; 45(4):1466-72. PubMed ID: 21268630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time trends of Arctic contamination in relation to emission history and chemical persistence and partitioning properties.
    Gouin T; Wania F
    Environ Sci Technol; 2007 Sep; 41(17):5986-92. PubMed ID: 17937271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of polyparameter linear free energy relationships in environmental chemistry.
    Endo S; Goss KU
    Environ Sci Technol; 2014 Nov; 48(21):12477-91. PubMed ID: 25280011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential of degradable organic chemicals for absolute and relative enrichment in the Arctic.
    Wania F
    Environ Sci Technol; 2006 Jan; 40(2):569-77. PubMed ID: 16468404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multimedia partitioning, overall persistence, and long-range transport potential in the context of POPs and PBT chemical assessments.
    Scheringer M; Jones KC; Matthies M; Simonich S; van de Meent D
    Integr Environ Assess Manag; 2009 Oct; 5(4):557-76. PubMed ID: 19552504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.
    Wong F; Wania F
    J Environ Monit; 2011 Jun; 13(6):1569-78. PubMed ID: 21637880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining long-range transport and bioaccumulation considerations to identify potential Arctic contaminants.
    Czub G; Wania F; McLachlan MS
    Environ Sci Technol; 2008 May; 42(10):3704-9. PubMed ID: 18546711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the influence of intermittent rain events on long-term fate and transport of organic air pollutants.
    Jolliet O; Hauschild M
    Environ Sci Technol; 2005 Jun; 39(12):4513-22. PubMed ID: 16047788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic.
    Weber J; Halsall CJ; Muir D; Teixeira C; Small J; Solomon K; Hermanson M; Hung H; Bidleman T
    Sci Total Environ; 2010 Jul; 408(15):2966-84. PubMed ID: 19939436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data.
    Sweetman AJ; Valle MD; Prevedouros K; Jones KC
    Chemosphere; 2005 Aug; 60(7):959-72. PubMed ID: 15992603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.