These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 24654679)
1. Multiplicative approximations, optimal hypervolume distributions, and the choice of the reference point. Friedrich T; Neumann F; Thyssen C Evol Comput; 2015; 23(1):131-59. PubMed ID: 24654679 [TBL] [Abstract][Full Text] [Related]
2. How to Specify a Reference Point in Hypervolume Calculation for Fair Performance Comparison. Ishibuchi H; Imada R; Setoguchi Y; Nojima Y Evol Comput; 2018; 26(3):411-440. PubMed ID: 29786458 [TBL] [Abstract][Full Text] [Related]
3. HypE: an algorithm for fast hypervolume-based many-objective optimization. Bader J; Zitzler E Evol Comput; 2011; 19(1):45-76. PubMed ID: 20649424 [TBL] [Abstract][Full Text] [Related]
5. A new evolutionary algorithm for solving many-objective optimization problems. Zou X; Chen Y; Liu M; Kang L IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1402-12. PubMed ID: 18784020 [TBL] [Abstract][Full Text] [Related]
6. Computing gap free Pareto front approximations with stochastic search algorithms. Schütze O; Laumanns M; Tantar E; Coello CA; Talbi el-G Evol Comput; 2010; 18(1):65-96. PubMed ID: 20064024 [TBL] [Abstract][Full Text] [Related]
7. An efficient algorithm for computing hypervolume contributions. Bringmann K; Friedrich T Evol Comput; 2010; 18(3):383-402. PubMed ID: 20560759 [TBL] [Abstract][Full Text] [Related]
8. Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms. Kuhn T; Fonseca CM; Paquete L; Ruzika S; Duarte MM; Figueira JR Evol Comput; 2016; 24(3):411-25. PubMed ID: 26135717 [TBL] [Abstract][Full Text] [Related]
9. The Set-Based Hypervolume Newton Method for Bi-Objective Optimization. Sosa Hernandez VA; Schutze O; Wang H; Deutz A; Emmerich M IEEE Trans Cybern; 2020 May; 50(5):2186-2196. PubMed ID: 30596593 [TBL] [Abstract][Full Text] [Related]
10. Calculating complete and exact Pareto front for multiobjective optimization: a new deterministic approach for discrete problems. Hu XB; Wang M; Di Paolo E IEEE Trans Cybern; 2013 Jun; 43(3):1088-101. PubMed ID: 23193246 [TBL] [Abstract][Full Text] [Related]
11. Global WASF-GA: An Evolutionary Algorithm in Multiobjective Optimization to Approximate the Whole Pareto Optimal Front. Saborido R; Ruiz AB; Luque M Evol Comput; 2017; 25(2):309-349. PubMed ID: 26855136 [TBL] [Abstract][Full Text] [Related]