These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24654730)

  • 21. Transposon insertion in a cinnamyl alcohol dehydrogenase gene is responsible for a brown midrib1 mutation in maize.
    Chen W; VanOpdorp N; Fitzl D; Tewari J; Friedemann P; Greene T; Thompson S; Kumpatla S; Zheng P
    Plant Mol Biol; 2012 Oct; 80(3):289-97. PubMed ID: 22847075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content.
    Bhatia R; Dalton S; Roberts LA; Moron-Garcia OM; Iacono R; Kosik O; Gallagher JA; Bosch M
    Sci Rep; 2019 Jun; 9(1):8800. PubMed ID: 31217516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional testing of a PF02458 homologue of putative rice arabinoxylan feruloyl transferase genes in Brachypodium distachyon.
    Buanafina MM; Fescemyer HW; Sharma M; Shearer EA
    Planta; 2016 Mar; 243(3):659-74. PubMed ID: 26612070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Down-regulation of the maize and Arabidopsis thaliana caffeic acid O-methyl-transferase genes by two new maize R2R3-MYB transcription factors.
    Fornalé S; Sonbol FM; Maes T; Capellades M; Puigdomènech P; Rigau J; Caparrós-Ruiz D
    Plant Mol Biol; 2006 Dec; 62(6):809-23. PubMed ID: 16941210
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell wall remodeling under salt stress: Insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize.
    Oliveira DM; Mota TR; Salatta FV; Sinzker RC; Končitíková R; Kopečný D; Simister R; Silva M; Goeminne G; Morreel K; Rencoret J; Gutiérrez A; Tryfona T; Marchiosi R; Dupree P; Del Río JC; Boerjan W; McQueen-Mason SJ; Gomez LD; Ferrarese-Filho O; Dos Santos WD
    Plant Cell Environ; 2020 Sep; 43(9):2172-2191. PubMed ID: 32441772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in Cell Wall Polymers and Degradability in Maize Mutants Lacking 3'- and 5'-O-Methyltransferases Involved in Lignin Biosynthesis.
    Fornalé S; Rencoret J; García-Calvo L; Encina A; Rigau J; Gutiérrez A; Del Río JC; Caparros-Ruiz D
    Plant Cell Physiol; 2017 Feb; 58(2):240-255. PubMed ID: 28013276
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.
    Fornalé S; Shi X; Chai C; Encina A; Irar S; Capellades M; Fuguet E; Torres JL; Rovira P; Puigdomènech P; Rigau J; Grotewold E; Gray J; Caparrós-Ruiz D
    Plant J; 2010 Nov; 64(4):633-44. PubMed ID: 21070416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model studies of ferulate-coniferyl alcohol cross-product formation in primary maize walls: implications for lignification in grasses.
    Grabber JH; Ralph J; Hatfield RD
    J Agric Food Chem; 2002 Oct; 50(21):6008-16. PubMed ID: 12358473
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of lignin structure and cell wall reticulation on maize cell wall degradability.
    Zhang Y; Culhaoglu T; Pollet B; Melin C; Denoue D; Barrière Y; Baumberger S; Méchin V
    J Agric Food Chem; 2011 Sep; 59(18):10129-35. PubMed ID: 21827204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular composition of leaves and stems of genetically modified Bt and near-isogenic non-Bt maize--characterization of lignin patterns.
    Poerschmann J; Gathmann A; Augustin J; Langer U; Górecki T
    J Environ Qual; 2005; 34(5):1508-18. PubMed ID: 16091603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lignin down-regulation of Zea mays via dsRNAi and klason lignin analysis.
    Park SH; Ong RG; Mei C; Sticklen M
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25080235
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modifying crops to increase cell wall digestibility.
    Jung HJ; Samac DA; Sarath G
    Plant Sci; 2012 Apr; 185-186():65-77. PubMed ID: 22325867
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic and molecular basis of grass cell wall biosynthesis and degradability. II. Lessons from brown-midrib mutants.
    Barrière Y; Ralph J; Méchin V; Guillaumie S; Grabber JH; Argillier O; Chabbert B; Lapierre C
    C R Biol; 2004; 327(9-10):847-60. PubMed ID: 15587076
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitinase-like1 Plays a Role in Stalk Tensile Strength in Maize.
    Jiao S; Hazebroek JP; Chamberlin MA; Perkins M; Sandhu AS; Gupta R; Simcox KD; Yinghong L; Prall A; Heetland L; Meeley RB; Multani DS
    Plant Physiol; 2019 Nov; 181(3):1127-1147. PubMed ID: 31492738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The maize ZmMYB42 represses the phenylpropanoid pathway and affects the cell wall structure, composition and degradability in Arabidopsis thaliana.
    Sonbol FM; Fornalé S; Capellades M; Encina A; Touriño S; Torres JL; Rovira P; Ruel K; Puigdomènech P; Rigau J; Caparrós-Ruiz D
    Plant Mol Biol; 2009 Jun; 70(3):283-96. PubMed ID: 19238561
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maize stem tissues: ferulate deposition in developing internode cell walls.
    Jung HJ
    Phytochemistry; 2003 Jul; 63(5):543-9. PubMed ID: 12809714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development.
    Zhang Y; Legland D; El Hage F; Devaux MF; Guillon F; Reymond M; Méchin V
    PLoS One; 2019; 14(7):e0219923. PubMed ID: 31361770
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines.
    Li M; Heckwolf M; Crowe JD; Williams DL; Magee TD; Kaeppler SM; de Leon N; Hodge DB
    J Exp Bot; 2015 Jul; 66(14):4305-15. PubMed ID: 25871649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall-bound ferulic acid in alfalfa (Medicago sativa L.).
    Chen F; Srinivasa Reddy MS; Temple S; Jackson L; Shadle G; Dixon RA
    Plant J; 2006 Oct; 48(1):113-24. PubMed ID: 16972868
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.
    Mélida H; Largo-Gosens A; Novo-Uzal E; Santiago R; Pomar F; García P; García-Angulo P; Acebes JL; Álvarez J; Encina A
    J Integr Plant Biol; 2015 Apr; 57(4):357-72. PubMed ID: 25735403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.