These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 24654849)
1. In silico molecular interaction analysis of LTNF peptide-LT10 with snake venom enzymes. Chavan SG; Deobagkar DD Protein Pept Lett; 2014 Jul; 21(7):646-56. PubMed ID: 24654849 [TBL] [Abstract][Full Text] [Related]
2. An in silico insight into novel therapeutic interaction of LTNF peptide-LT10 and design of structure based peptidomimetics for putative anti-diabetic activity. Chavan SG; Deobagkar DD PLoS One; 2015; 10(3):e0121860. PubMed ID: 25816209 [TBL] [Abstract][Full Text] [Related]
3. Use of immunoturbidimetry to detect venom-antivenom binding using snake venoms. O'Leary MA; Maduwage K; Isbister GK J Pharmacol Toxicol Methods; 2013; 67(3):177-81. PubMed ID: 23416032 [TBL] [Abstract][Full Text] [Related]
4. The detection of hemorrhagic proteins in snake venoms using monoclonal antibodies against Virginia opossum (Didelphis virginiana) serum. Sánchez EE; García C; Pérez JC; De La Zerda SJ Toxicon; 1998 Oct; 36(10):1451-9. PubMed ID: 9723843 [TBL] [Abstract][Full Text] [Related]
5. Molecular docking and dynamic studies of crepiside E beta glucopyranoside as an inhibitor of snake venom PLA2. Kumar MS; R A; Bhaskaran S; D DR; Nair AS; R SP J Mol Model; 2019 Mar; 25(4):88. PubMed ID: 30847632 [TBL] [Abstract][Full Text] [Related]
6. Expression, activation, and processing of the recombinant snake venom metalloproteinase, pro-atrolysin E. Shimokawa K; Jia LG; Wang XM; Fox JW Arch Biochem Biophys; 1996 Nov; 335(2):283-94. PubMed ID: 8914925 [TBL] [Abstract][Full Text] [Related]
7. A novel synthetic peptide inspired on Lys49 phospholipase A Almeida JR; Mendes B; Lancellotti M; Marangoni S; Vale N; Passos Ó; Ramos MJ; Fernandes PA; Gomes P; Da Silva SL Eur J Med Chem; 2018 Apr; 149():248-256. PubMed ID: 29501945 [TBL] [Abstract][Full Text] [Related]
9. Venomics of Naja sputatrix, the Javan spitting cobra: A short neurotoxin-driven venom needing improved antivenom neutralization. Tan NH; Wong KY; Tan CH J Proteomics; 2017 Mar; 157():18-32. PubMed ID: 28159706 [TBL] [Abstract][Full Text] [Related]
10. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America. Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078 [TBL] [Abstract][Full Text] [Related]
11. Snake venomics of monocled cobra (Naja kaouthia) and investigation of human IgG response against venom toxins. Laustsen AH; Gutiérrez JM; Lohse B; Rasmussen AR; Fernández J; Milbo C; Lomonte B Toxicon; 2015 Jun; 99():23-35. PubMed ID: 25771242 [TBL] [Abstract][Full Text] [Related]
12. Snake-venom resistance as a mammalian trophic adaptation: lessons from didelphid marsupials. Voss RS; Jansa SA Biol Rev Camb Philos Soc; 2012 Nov; 87(4):822-37. PubMed ID: 22404916 [TBL] [Abstract][Full Text] [Related]
13. Functional Application of Snake Venom Proteomics in In Vivo Antivenom Assessment. Tan CH; Tan KY Methods Mol Biol; 2019; 1871():153-158. PubMed ID: 30276739 [TBL] [Abstract][Full Text] [Related]
14. Computational and in vitro insights on snake venom phospholipase A Muthusamy K; Chinnasamy S; Nagarajan S; Sivaraman T J Biomol Struct Dyn; 2018 Dec; 36(16):4197-4208. PubMed ID: 29171346 [TBL] [Abstract][Full Text] [Related]
15. Isolation, sequence analysis, and biological activity of atrolysin E/D, the non-RGD disintegrin domain from Crotalus atrox venom. Shimokawa K; Jia LG; Shannon JD; Fox JW Arch Biochem Biophys; 1998 Jun; 354(2):239-46. PubMed ID: 9637732 [TBL] [Abstract][Full Text] [Related]
16. Venom neutralization by purified bioactive molecules: Synthetic peptide derivatives of the endogenous PLA(2) inhibitory protein PIP (a mini-review). Thwin MM; Samy RP; Satyanarayanajois SD; Gopalakrishnakone P Toxicon; 2010 Dec; 56(7):1275-83. PubMed ID: 20045432 [TBL] [Abstract][Full Text] [Related]
17. Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Gopi K; Anbarasu K; Renu K; Jayanthi S; Vishwanath BS; Jayaraman G Biochim Biophys Acta; 2016 Jul; 1860(7):1528-40. PubMed ID: 27033089 [TBL] [Abstract][Full Text] [Related]
18. Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the "bivalent" Sea Snake Antivenom. Tan CH; Tan KY; Tan NH J Proteomics; 2016 Jul; 144():33-8. PubMed ID: 27282922 [TBL] [Abstract][Full Text] [Related]
19. Inhibition of Snake Venom Metalloproteinase by β-Lactoglobulin Peptide from Buffalo (Bubalus bubalis) Colostrum. Arpitha A; Sebastin Santhosh M; Rohit AC; Girish KS; Vinod D; Aparna HS Appl Biochem Biotechnol; 2017 Aug; 182(4):1415-1432. PubMed ID: 28155167 [TBL] [Abstract][Full Text] [Related]
20. A neutralizing recombinant single chain antibody, scFv, against BaP1, A P-I hemorrhagic metalloproteinase from Bothrops asper snake venom. Castro JM; Oliveira TS; Silveira CR; Caporrino MC; Rodriguez D; Moura-da-Silva AM; Ramos OH; Rucavado A; Gutiérrez JM; Magalhães GS; Faquim-Mauro EL; Fernandes I Toxicon; 2014 Sep; 87():81-91. PubMed ID: 24887282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]