BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24654935)

  • 1. To prepare and characterize microcrystalline cellulose granules using water and isopropyl alcohol as granulating agents and determine its end-point by thermal and rheological tools.
    Chaudhari SP; Dave RH
    Drug Dev Ind Pharm; 2015 May; 41(5):744-52. PubMed ID: 24654935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. To Evaluate the Effect of Solvents and Different Relative Humidity Conditions on Thermal and Rheological Properties of Microcrystalline Cellulose 101 Using METHOCEL™ E15LV as a Binder.
    Jagia M; Trivedi M; Dave RH
    AAPS PharmSciTech; 2016 Aug; 17(4):995-1006. PubMed ID: 26729530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigate the effect of solvents on wet granulation of microcrystalline cellulose using hydroxypropyl methylcellulose as a binder and evaluation of rheological and thermal characteristics of granules.
    Tank D; Karan K; Gajera BY; Dave RH
    Saudi Pharm J; 2018 May; 26(4):593-602. PubMed ID: 31011282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. To determine the end point of wet granulation by measuring powder energies and thermal properties.
    Dave RH; Wu SH; Contractor LD
    Drug Dev Ind Pharm; 2012 Apr; 38(4):439-46. PubMed ID: 22188039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. To study physical compatibility between dibasic calcium phosphate and cohesive actives using powder rheometer and thermal methods.
    Trivedi MR; Dave RH
    Drug Dev Ind Pharm; 2014 Dec; 40(12):1585-96. PubMed ID: 24099552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of microcrystalline cellulose and silicified microcrystalline cellulose wet masses using a powder rheometer.
    Luukkonen P; Schaefer T; Podczeck F; Newton M; Hellén L; Yliruusi J
    Eur J Pharm Sci; 2001 May; 13(2):143-9. PubMed ID: 11297898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.
    Osei-Yeboah F; Feng Y; Sun CC
    J Pharm Sci; 2014 Jan; 103(1):207-15. PubMed ID: 24218097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the compressibility of wax matrix granules of acetaminophen and their admixtures with various tableting bases.
    Uhumwangho MU; Okor RS
    Pak J Pharm Sci; 2006 Apr; 19(2):103-7. PubMed ID: 16751119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of colloidal silica on rheological properties of common pharmaceutical excipients.
    Majerová D; Kulaviak L; Růžička M; Štěpánek F; Zámostný P
    Eur J Pharm Biopharm; 2016 Sep; 106():2-8. PubMed ID: 27163240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The granule porosity controls the loss of compactibility for both dry- and wet-processed cellulose granules but at different rate.
    Nordström J; Alderborn G
    J Pharm Sci; 2015 Jun; 104(6):2029-2039. PubMed ID: 25872760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The change in characteristics of microcrystalline cellulose during wet granulation using a high-shear mixer.
    Suzuki T; Kikuchi H; Yamamura S; Terada K; Yamamoto K
    J Pharm Pharmacol; 2001 May; 53(5):609-16. PubMed ID: 11370700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rheological properties of self-emulsifying systems, water and microcrystalline cellulose.
    Newton JM; Bazzigialuppi M; Podczeck F; Booth S; Clarke A
    Eur J Pharm Sci; 2005 Oct; 26(2):176-83. PubMed ID: 16046106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the type of cellulose on properties of multi-unit target releasing in stomach dosage form with verapamil hydrochloride.
    Sawicki W; Łunio R; Walentynowicz O; Kubasik-Juraniec J
    Acta Pol Pharm; 2007; 64(1):81-8. PubMed ID: 17665855
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is silicified wet-granulated microcrystalline cellulose better than original wet-granulated microcrystalline cellulose?
    Habib YS; Abramowitz R; Jerzewski RL; Jain NB; Agharkar SN
    Pharm Dev Technol; 1999 Aug; 4(3):431-7. PubMed ID: 10434289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roller compaction of moist pharmaceutical powders.
    Wu CY; Hung WL; Miguélez-Morán AM; Gururajan B; Seville JP
    Int J Pharm; 2010 May; 391(1-2):90-7. PubMed ID: 20176096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the binding effect of human serum albumin on the properties of granules.
    Kristó K; Bajdik J; Eros I; Pintye-Hódi K
    Eur J Pharm Biopharm; 2008 Nov; 70(3):791-5. PubMed ID: 18619535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microcrystalline cellulose-water interaction--a novel approach using thermoporosimetry.
    Luukkonen P; Maloney T; Rantanen J; Paulapuro H; Yliruusi J
    Pharm Res; 2001 Nov; 18(11):1562-9. PubMed ID: 11758764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrusion-spheronisation of microcrystalline cellulose pastes using a non-aqueous liquid binder.
    Mascia S; Seiler C; Fitzpatrick S; Wilson DI
    Int J Pharm; 2010 Apr; 389(1-2):1-9. PubMed ID: 20123008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation.
    Buckton G; Yonemochi E; Yoon WL; Moffat AC
    Int J Pharm; 1999 Apr; 181(1):41-7. PubMed ID: 10370201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.