These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 24655204)

  • 21. [Irregular activity oscillations of rotary molecular motor. A simple kinetic model of F1-ATPase].
    Gol'dshteĭn BN; Aksirov AM; Zakrzhevskaia DT
    Mol Biol (Mosk); 2012; 46(5):792-8. PubMed ID: 23156679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydration properties of magnesium and calcium ions from constrained first principles molecular dynamics.
    Ikeda T; Boero M; Terakura K
    J Chem Phys; 2007 Aug; 127(7):074503. PubMed ID: 17718616
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Behavior of the ATP grasp domain of biotin carboxylase monomers and dimers studied using molecular dynamics simulations.
    Novak BR; Moldovan D; Waldrop GL; de Queiroz MS
    Proteins; 2011 Feb; 79(2):622-32. PubMed ID: 21120858
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Magnesium (Mg2+) cofactor in a triplet state reduces the proton of a coordinated water molecule to the hydrogen atom and pushes it out of the complex at a high speed].
    Tulub AA
    Biofizika; 2002; 47(1):20-6. PubMed ID: 11855285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of six nucleotide cofactors to the hexameric helicase RepA protein of plasmid RSF1010. 2. Base specificity, nucleotide structure, magnesium, and salt effect on the cooperative binding of the cofactors.
    Jezewska MJ; Lucius AL; Bujalowski W
    Biochemistry; 2005 Mar; 44(10):3877-90. PubMed ID: 15751963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rotation of F1-ATPase: how an ATP-driven molecular machine may work.
    Kinosita K; Adachi K; Itoh H
    Annu Rev Biophys Biomol Struct; 2004; 33():245-68. PubMed ID: 15139813
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ion-radical mechanism of enzymatic ATP synthesis: DFT calculations and experimental control.
    Buchachenko AL; Kuznetsov DA; Breslavskaya NN
    J Phys Chem B; 2010 Feb; 114(6):2287-92. PubMed ID: 20095588
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic-resolution dissection of the energetics and mechanism of isomerization of hydrated ATP-Mg(2+) through the SOMA string method.
    Branduardi D; Marinelli F; Faraldo-Gómez JD
    J Comput Chem; 2016 Mar; 37(6):575-86. PubMed ID: 26149527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of RNA 3'-terminal phosphate cyclase and its complexes with Mg2+ +ATP, ATP or Mn2+.
    Shimizu S; Ohki M; Ohkubo N; Suzuki K; Tsunoda M; Sekiguchi T; Takénaka A
    Nucleic Acids Symp Ser (Oxf); 2008; (52):221-2. PubMed ID: 18776333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coordination and control inside simple biomolecular machines.
    Yu J
    Adv Exp Med Biol; 2014; 805():353-84. PubMed ID: 24446369
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulating GTP:Mg and GDP:Mg with a simple force field: a structural and thermodynamic analysis.
    Simonson T; Satpati P
    J Comput Chem; 2013 Apr; 34(10):836-46. PubMed ID: 23280996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Density functional calculations of ATP systems. 2. ATP hydrolysis at the active site of actin.
    Akola J; Jones RO
    J Phys Chem B; 2006 Apr; 110(15):8121-9. PubMed ID: 16610915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism of flexibility control for ATP access of hepatitis C virus NS3 helicase.
    Palla M; Chen CP; Zhang Y; Li J; Ju J; Liao JC
    J Biomol Struct Dyn; 2013; 31(2):129-41. PubMed ID: 22870946
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dance of actin and myosin: a structural and spectroscopic perspective.
    Root DD
    Cell Biochem Biophys; 2002; 37(2):111-39. PubMed ID: 12482135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the myosin catalysis of ATP hydrolysis.
    Onishi H; Mochizuki N; Morales MF
    Biochemistry; 2004 Apr; 43(13):3757-63. PubMed ID: 15049682
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding sites for Mg(II) in H(+)-ATPase from Bacillus PS3 and in the alpha 3 beta 3 gamma subcomplex studied by one-dimensional ESEEM and two-dimensional HYSCORE spectroscopy of oxovanadium(IV) complexes: a possible role for beta-His-324.
    Buy C; Matsui T; Andrianambinintsoa S; Sigalat C; Girault G; Zimmermann JL
    Biochemistry; 1996 Nov; 35(45):14281-93. PubMed ID: 8916914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar.
    Sakaki N; Shimo-Kon R; Adachi K; Itoh H; Furuike S; Muneyuki E; Yoshida M; Kinosita K
    Biophys J; 2005 Mar; 88(3):2047-56. PubMed ID: 15626703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of epsilon subunit on the rotation of thermophilic Bacillus F1-ATPase.
    Tsumuraya M; Furuike S; Adachi K; Kinosita K; Yoshida M
    FEBS Lett; 2009 Apr; 583(7):1121-6. PubMed ID: 19265694
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A hand-over-hand diffusing model for myosin-VI molecular motors.
    Xie P; Dou SX; Wang PY
    Biophys Chem; 2006 Jul; 122(2):90-100. PubMed ID: 16564612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase.
    Gao YQ; Yang W; Karplus M
    Cell; 2005 Oct; 123(2):195-205. PubMed ID: 16239139
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.