These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 24655271)

  • 21. Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene.
    Shi H; Zhan Z; Qi Z; Huang K; Veen EV; Silva-Guillén JÁ; Zhang R; Li P; Xie K; Ji H; Katsnelson MI; Yuan S; Qin S; Zhang Z
    Nat Commun; 2020 Jan; 11(1):371. PubMed ID: 31953432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anomalous twisting strength of tilt grain boundaries in armchair graphene nanoribbons.
    Liu X; Wang F; Wu H
    Phys Chem Chem Phys; 2015 Dec; 17(47):31911-6. PubMed ID: 26568035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Landau Levels in Strained Optical Lattices.
    Tian B; Endres M; Pekker D
    Phys Rev Lett; 2015 Dec; 115(23):236803. PubMed ID: 26684134
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gap opening in graphene nanoribbons by application of simple shear strain and in-plane electric field.
    Bandeira NS; da Costa DR; Chaves A; Farias GA; Filho RNC
    J Phys Condens Matter; 2021 Feb; 33(6):065503. PubMed ID: 33108780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Strain engineering of electronic properties and anomalous valley hall conductivity of transition metal dichalcogenide nanoribbons.
    Shayeganfar F
    Sci Rep; 2022 Jul; 12(1):11285. PubMed ID: 35788139
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Size quantization of Dirac fermions in graphene constrictions.
    Terrés B; Chizhova LA; Libisch F; Peiro J; Jörger D; Engels S; Girschik A; Watanabe K; Taniguchi T; Rotkin SV; Burgdörfer J; Stampfer C
    Nat Commun; 2016 May; 7():11528. PubMed ID: 27198961
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Room temperature strain-induced Landau levels in graphene on a wafer-scale platform.
    Nigge P; Qu AC; Lantagne-Hurtubise É; Mårsell E; Link S; Tom G; Zonno M; Michiardi M; Schneider M; Zhdanovich S; Levy G; Starke U; Gutiérrez C; Bonn D; Burke SA; Franz M; Damascelli A
    Sci Adv; 2019 Nov; 5(11):eaaw5593. PubMed ID: 31723598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strain-induced pseudomagnetic field for novel graphene electronics.
    Low T; Guinea F
    Nano Lett; 2010 Sep; 10(9):3551-4. PubMed ID: 20715802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles.
    Levy N; Burke SA; Meaker KL; Panlasigui M; Zettl A; Guinea F; Castro Neto AH; Crommie MF
    Science; 2010 Jul; 329(5991):544-7. PubMed ID: 20671183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spin-valley filtering in strained graphene structures with artificially induced carrier mass and spin-orbit coupling.
    Grujić MM; Tadić MŽ; Peeters FM
    Phys Rev Lett; 2014 Jul; 113(4):046601. PubMed ID: 25105639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Massless Dirac fermions in graphene under an external periodic magnetic field.
    Liu S; Nurbawono A; Guo N; Zhang C
    J Phys Condens Matter; 2013 Oct; 25(39):395302. PubMed ID: 23999085
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electronic and magnetic properties and structural stability of BeO sheet and nanoribbons.
    Wu W; Lu P; Zhang Z; Guo W
    ACS Appl Mater Interfaces; 2011 Dec; 3(12):4787-95. PubMed ID: 22039765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons.
    Liang X; Wi S
    ACS Nano; 2012 Nov; 6(11):9700-10. PubMed ID: 23078122
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electronic structures of SiC nanoribbons.
    Sun L; Li Y; Li Z; Li Q; Zhou Z; Chen Z; Yang J; Hou JG
    J Chem Phys; 2008 Nov; 129(17):174114. PubMed ID: 19045340
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A New Paradigm to Half-Metallicity in Graphene Nanoribbons.
    Yu J; Guo W
    J Phys Chem Lett; 2013 Mar; 4(6):951-5. PubMed ID: 26291362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valley-dependent beams controlled by pseudomagnetic field in distorted photonic graphene.
    Deng F; Li Y; Sun Y; Wang X; Guo Z; Shi Y; Jiang H; Chang K; Chen H
    Opt Lett; 2015 Jul; 40(14):3380-3. PubMed ID: 26176474
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene Nanobubbles as Valley Filters and Beam Splitters.
    Settnes M; Power SR; Brandbyge M; Jauho AP
    Phys Rev Lett; 2016 Dec; 117(27):276801. PubMed ID: 28084750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unimpeded tunneling in graphene nanoribbons.
    Roslyak O; Iurov A; Gumbs G; Huang D
    J Phys Condens Matter; 2010 Apr; 22(16):165301. PubMed ID: 21386420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.