BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 24655382)

  • 1. Expression profiles of calcium-dependent protein kinase genes (CDPK1-14) in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia under temperature- and salt-induced stresses.
    Veremeichik GN; Shkryl YN; Pinkus SA; Bulgakov VP
    J Plant Physiol; 2014 Apr; 171(7):467-74. PubMed ID: 24655382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decreased ROS level and activation of antioxidant gene expression in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Gorpenchenko TY; Aminin DL; Zhuravlev YN
    Planta; 2010 Oct; 232(5):1023-32. PubMed ID: 20680642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of NADPH-oxidase gene expression in rolB-transformed calli of Arabidopsis thaliana and Rubia cordifolia.
    Veremeichik G; Bulgakov V; Shkryl Y
    Plant Physiol Biochem; 2016 Aug; 105():282-289. PubMed ID: 27208504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and characterization of seven class III peroxidases induced by overexpression of the agrobacterial rolB gene in Rubia cordifolia transgenic callus cultures.
    Veremeichik GN; Shkryl YN; Bulgakov VP; Avramenko TV; Zhuravlev YN
    Plant Cell Rep; 2012 Jun; 31(6):1009-19. PubMed ID: 22238062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auxin-dependent regulation of growth via rolB-induced modulation of the ROS metabolism in the long-term cultivated pRiA4-transformed Rubiacordifolia L. calli.
    Veremeichik GN; Gorpenchenko TY; Rusapetova TV; Brodovskaya EV; Tchernoded GK; Bulgakov DV; Shkryl YN; Bulgakov VP
    Plant Physiol Biochem; 2023 Sep; 202():107932. PubMed ID: 37557016
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation of anthraquinone biosynthesis in long-cultured callus culture of Rubia cordifolia transformed with the rolA plant oncogene.
    Veremeichik GN; Bulgakov VP; Shkryl YN; Silantieva SA; Makhazen DS; Tchernoded GK; Mischenko NP; Fedoreyev SA; Vasileva EA
    J Biotechnol; 2019 Dec; 306():38-46. PubMed ID: 31526834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene.
    Bulgakov VP; Aminin DL; Shkryl YN; Gorpenchenko TY; Veremeichik GN; Dmitrenok PS; Zhuravlev YN
    Mol Plant Microbe Interact; 2008 Dec; 21(12):1561-70. PubMed ID: 18986252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in anthraquinone content in Rubia cordifolia cells transformed by rol genes does not involve activation of the NADPH oxidase signaling pathway.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Biochemistry (Mosc); 2003 Jul; 68(7):795-801. PubMed ID: 12946262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of anthraquinone biosynthesis in Rubia cordifolia cells by heterologous expression of a calcium-dependent protein kinase gene.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Zhuravlev YN
    Biotechnol Bioeng; 2011 Jul; 108(7):1734-8. PubMed ID: 21328322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense.
    Bulgakov VP; Gorpenchenko TY; Veremeichik GN; Shkryl YN; Tchernoded GK; Bulgakov DV; Aminin DL; Zhuravlev YN
    Plant Physiol; 2012 Mar; 158(3):1371-81. PubMed ID: 22271748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increase of anthraquinone content in Rubia cordifolia cells transformed by native and constitutively active forms of the AtCPK1 gene.
    Shkryl YN; Veremeichik GN; Makhazen DS; Silantieva SA; Mishchenko NP; Vasileva EA; Fedoreyev SA; Bulgakov VP
    Plant Cell Rep; 2016 Sep; 35(9):1907-16. PubMed ID: 27251124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the auto-inhibitory domain in Arabidopsis AtCPK1 leads to increased salt, cold and heat tolerance in the AtCPK1-transformed Rubia cordifolia L cell cultures.
    Veremeichik GN; Shkryl YN; Gorpenchenko TY; Silantieva SA; Avramenko TV; Brodovskaya EV; Bulgakov VP
    Plant Physiol Biochem; 2021 Feb; 159():372-382. PubMed ID: 33444896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VaCPK20, a calcium-dependent protein kinase gene of wild grapevine Vitis amurensis Rupr., mediates cold and drought stress tolerance.
    Dubrovina AS; Kiselev KV; Khristenko VS; Aleynova OA
    J Plant Physiol; 2015 Aug; 185():1-12. PubMed ID: 26264965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Tchernoded GK; Mischenko NP; Fedoreyev SA; Zhuravlev YN
    Biotechnol Bioeng; 2008 May; 100(1):118-25. PubMed ID: 18023060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering high yields of secondary metabolites in Rubia cell cultures through transformation with rol genes.
    Bulgakov VP; Shkryl YN; Veremeichik GN
    Methods Mol Biol; 2010; 643():229-42. PubMed ID: 20552455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Ca(2+) channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes.
    Bulgakov VP; Tchernoded GK; Mischenko NP; Shkryl YN; Glazunov VP; Fedoreyev SA; Zhuravlev YN
    Planta; 2003 Jul; 217(3):349-55. PubMed ID: 14520561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The production of class III plant peroxidases in transgenic callus cultures transformed with the rolB gene of Agrobacterium rhizogenes.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Avramenko TV; Günter EA; Ovodov YS; Muzarok TI; Zhuravlev YN
    J Biotechnol; 2013 Oct; 168(1):64-70. PubMed ID: 23965271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic transformation of Bacopa monnieri by wild type strains of Agrobacterium rhizogenes stimulates production of bacopa saponins in transformed calli and plants.
    Majumdar S; Garai S; Jha S
    Plant Cell Rep; 2011 May; 30(5):941-54. PubMed ID: 21350825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The TR-DNA region carrying the auxin synthesis genes of the Agrobacterium rhizogenes agropine-type plasmid pRiA4: nucleotide sequence analysis and introduction into tobacco plants.
    Camilleri C; Jouanin L
    Mol Plant Microbe Interact; 1991; 4(2):155-62. PubMed ID: 1932811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Effect of the rol genes from Agrobacterium rhizogenes on the content and structure of pectic substances and glycanase activity in Rubia cordifolia transgenic cell cultures].
    Giunter EA; Popeĭko OV; Shkryl' IuN; Veremeĭchik GN; Bulgakov VP; Ovodov IuS
    Prikl Biokhim Mikrobiol; 2013; 49(4):409-16. PubMed ID: 24455868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.