These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 24655389)

  • 1. Symplastic and apoplastic uptake and root to shoot translocation of nickel in wheat as affected by exogenous amino acids.
    Dalir N; Khoshgoftarmanesh AH
    J Plant Physiol; 2014 Apr; 171(7):531-6. PubMed ID: 24655389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root uptake and translocation of nickel in wheat as affected by histidine.
    Dalir N; Khoshgoftarmanesh AH
    J Plant Physiol; 2015 Jul; 184():8-14. PubMed ID: 26162706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of the cell walls in Ni binding by plant roots.
    Meychik N; Nikolaeva Y; Kushunina M
    J Plant Physiol; 2019; 234-235():28-35. PubMed ID: 30660944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass.
    Van der Vliet L; Peterson C; Hale B
    J Exp Bot; 2007; 58(11):2939-47. PubMed ID: 17804431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of root cadmium radial transport in seedlings of two wheat (Triticum aestivum L.) genotypes differing in grain cadmium accumulation.
    Liu Y; Lu M; Tao Q; Luo J; Li J; Guo X; Liang Y; Yang X; Li T
    Environ Pollut; 2020 Nov; 266(Pt 3):115235. PubMed ID: 32707356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root characteristics critical for cadmium tolerance and reduced accumulation in wheat (Triticum aestivum L.).
    Zhang D; Zhou H; Shao L; Wang H; Zhang Y; Zhu T; Ma L; Ding Q; Ma L
    J Environ Manage; 2022 Mar; 305():114365. PubMed ID: 34953227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.
    Hart JJ; Welch RM; Norvell WA; Sullivan LA; Kochian LV
    Plant Physiol; 1998 Apr; 116(4):1413-20. PubMed ID: 9536059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apoplastic and symplastic uptake of phenanthrene in wheat roots.
    Zhan X; Zhu M; Shen Y; Yue L; Li J; Gardea-Torresdey JL; Xu G
    Environ Pollut; 2018 Feb; 233():331-339. PubMed ID: 29096306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation.
    Chan DY; Hale BA
    J Exp Bot; 2004 Dec; 55(408):2571-9. PubMed ID: 15361533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation.
    Harris NS; Taylor GJ
    BMC Plant Biol; 2004 Apr; 4():4. PubMed ID: 15084224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytochelatins play key roles for the difference in root arsenic accumulation of different Triticum aestivum cultivars in comparison with arsenate uptake kinetics and reduction.
    Shi GL; Lou LQ; Li DJ; Hu ZB; Cai QS
    Chemosphere; 2017 May; 175():192-199. PubMed ID: 28222373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator Thlaspi caerulescens.
    Richau KH; Kozhevnikova AD; Seregin IV; Vooijs R; Koevoets PLM; Smith JAC; Ivanov VB; Schat H
    New Phytol; 2009; 183(1):106-116. PubMed ID: 19368671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat.
    Erenoglu EB; Kutman UB; Ceylan Y; Yildiz B; Cakmak I
    New Phytol; 2011 Jan; 189(2):438-48. PubMed ID: 21029104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars.
    Hart JJ; Norvell WA; Welch RM; Sullivan LA; Kochian LV
    Plant Physiol; 1998 Sep; 118(1):219-26. PubMed ID: 9733541
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Zhu J; Zhao P; Nie Z; Shi H; Li C; Wang Y; Qin S; Qin X; Liu H
    BMC Plant Biol; 2020 Dec; 20(1):550. PubMed ID: 33287728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Uptake and translocation of selenate or selenite by wheat and rice seedlings].
    Chen SY; Jiang RF; Li HF
    Huan Jing Ke Xue; 2011 Jan; 32(1):284-9. PubMed ID: 21404700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon alleviates Cd stress of wheat seedlings (Triticum turgidum L. cv. Claudio) grown in hydroponics.
    Rizwan M; Meunier JD; Davidian JC; Pokrovsky OS; Bovet N; Keller C
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1414-27. PubMed ID: 26370813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants.
    Wu J; Mock HP; Giehl RFH; Pitann B; Mühling KH
    J Hazard Mater; 2019 Feb; 364():581-590. PubMed ID: 30388642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greater morphological and primary metabolic adaptations in roots contribute to phosphate-deficiency tolerance in the bread wheat cultivar Kenong199.
    Zheng L; Karim MR; Hu YG; Shen R; Lan P
    BMC Plant Biol; 2021 Aug; 21(1):381. PubMed ID: 34412589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Ni stress on the uptake and translocation of Ni and other mineral nutrition elements in mature wheat grown in sierozems from northwest of China.
    Wang Y; Wang S; Nan Z; Ma J; Zang F; Chen Y; Li Y; Zhang Q
    Environ Sci Pollut Res Int; 2015 Dec; 22(24):19756-63. PubMed ID: 26280396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.