BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24655915)

  • 1. Uptake of certain heavy metals from contaminated soil by mushroom--Galerina vittiformis.
    Damodaran D; Vidya Shetty K; Raj Mohan B
    Ecotoxicol Environ Saf; 2014 Jun; 104():414-22. PubMed ID: 24655915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bioaccumulation of heavy metals in macrofungi and its application in ecological remediation].
    An XL; Zhou QX
    Ying Yong Sheng Tai Xue Bao; 2007 Aug; 18(8):1897-902. PubMed ID: 17974263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis.
    Damodaran D; Balakrishnan RM; Shetty VK
    Biomed Res Int; 2013; 2013():149120. PubMed ID: 24455671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metals intake by cultured mushrooms growing in model system.
    Ozcan MM; Dursun N; Al Juhaimi FY
    Environ Monit Assess; 2013 Oct; 185(10):8393-7. PubMed ID: 23591676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.
    Wang R; Guo J; Xu Y; Ding Y; Shen Y; Zheng X; Feng R
    Ecotoxicol Environ Saf; 2016 Feb; 124():239-247. PubMed ID: 26546906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodiversity variability and metal accumulation strategies in plants spontaneously inhibiting fly ash lagoon, India.
    Mukhopadhyay S; Rana V; Kumar A; Maiti SK
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):22990-23005. PubMed ID: 28819831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1.
    Bang J; Kamala-Kannan S; Lee KJ; Cho M; Kim CH; Kim YJ; Bae JH; Kim KH; Myung H; Oh BT
    Int J Phytoremediation; 2015; 17(1-6):515-20. PubMed ID: 25747237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.
    Antonkiewicz J; Para A
    Int J Phytoremediation; 2016; 18(3):245-50. PubMed ID: 26280197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia).
    Stefanović V; Trifković J; Mutić J; Tešić Ž
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13178-90. PubMed ID: 27023804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms.
    Širić I; Humar M; Kasap A; Kos I; Mioč B; Pohleven F
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18239-52. PubMed ID: 27272918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical composition and bioaccumulation ability of Boletus badius (Fr.) Fr. collected in western Poland.
    Proskura N; Podlasińska J; Skopicz-Radkiewicz L
    Chemosphere; 2017 Feb; 168():106-111. PubMed ID: 27776228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil.
    Zhou H; Zhou X; Zeng M; Liao BH; Liu L; Yang WT; Wu YM; Qiu QY; Wang YJ
    Ecotoxicol Environ Saf; 2014 Mar; 101():226-32. PubMed ID: 24507150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycoextraction by Clitocybe maxima combined with metal immobilization by biochar and activated carbon in an aged soil.
    Wu B; Cheng G; Jiao K; Shi W; Wang C; Xu H
    Sci Total Environ; 2016 Aug; 562():732-739. PubMed ID: 27110984
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal/metalloid contamination and isotopic composition of lead in edible mushrooms and forest soils originating from a smelting area.
    Komárek M; Chrastný V; Stíchová J
    Environ Int; 2007 Jul; 33(5):677-84. PubMed ID: 17346793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variation of heavy metal contamination between mushroom species in the Copperbelt province, Zambia: are the people at risk?
    Chungu D; Mwanza A; Ng'andwe P; Chungu BC; Maseka K
    J Sci Food Agric; 2019 May; 99(7):3410-3416. PubMed ID: 30609048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation and translocation of heavy metal by spontaneous plants growing on multi-metal-contaminated site in the Southeast of Rio Grande do Sul state, Brazil.
    Boechat CL; Pistóia VC; Gianelo C; Camargo FA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2371-80. PubMed ID: 26411450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.