These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24656080)

  • 21. Defining conformational ensembles of intrinsically disordered and partially folded proteins directly from chemical shifts.
    Jensen MR; Salmon L; Nodet G; Blackledge M
    J Am Chem Soc; 2010 Feb; 132(4):1270-2. PubMed ID: 20063887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An account of NMR in structural biology.
    Wagner G
    Nat Struct Biol; 1997 Oct; 4 Suppl():841-4. PubMed ID: 9377155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR-Based Determination of the 3D Structure of the Ligand-Protein Interaction Site without Protein Resonance Assignment.
    Orts J; Wälti MA; Marsh M; Vera L; Gossert AD; Güntert P; Riek R
    J Am Chem Soc; 2016 Apr; 138(13):4393-400. PubMed ID: 26943491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative evaluation of experimental NMR restraints.
    Nabuurs SB; Spronk CA; Krieger E; Maassen H; Vriend G; Vuister GW
    J Am Chem Soc; 2003 Oct; 125(39):12026-34. PubMed ID: 14505424
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups.
    Vögeli B; Segawa TF; Leitz D; Sobol A; Choutko A; Trzesniak D; van Gunsteren W; Riek R
    J Am Chem Soc; 2009 Dec; 131(47):17215-25. PubMed ID: 19891472
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of motional averaging on the calculation of NMR-derived structural properties.
    Daura X; Antes I; van Gunsteren WF; Thiel W; Mark AE
    Proteins; 1999 Sep; 36(4):542-55. PubMed ID: 10450095
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy.
    Clore GM; Robien MA; Gronenborn AM
    J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR structure validation in relation to dynamics and structure determination.
    Vranken WF
    Prog Nucl Magn Reson Spectrosc; 2014 Oct; 82():27-38. PubMed ID: 25444697
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings.
    Esteban-Martín S; Fenwick RB; Salvatella X
    J Am Chem Soc; 2010 Apr; 132(13):4626-32. PubMed ID: 20222664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous determination of protein backbone structure and dynamics from residual dipolar couplings.
    Bouvignies G; Markwick P; Brüschweiler R; Blackledge M
    J Am Chem Soc; 2006 Nov; 128(47):15100-1. PubMed ID: 17117856
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure determination of biological macromolecules in solution using nuclear magnetic resonance spectroscopy.
    Wider G
    Biotechniques; 2000 Dec; 29(6):1278-82, 1284-90, 1292 passim. PubMed ID: 11126132
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Projection angle restraints for studying structure and dynamics of biomolecules.
    Griesinger C; Peti W; Meiler J; Brüschweiler R
    Methods Mol Biol; 2004; 278():107-21. PubMed ID: 15317994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conformational propensities of intrinsically disordered proteins from NMR chemical shifts.
    Kragelj J; Ozenne V; Blackledge M; Jensen MR
    Chemphyschem; 2013 Sep; 14(13):3034-45. PubMed ID: 23794453
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NMR as a tool to identify and characterize protein folding intermediates.
    Neira JL
    Arch Biochem Biophys; 2013 Mar; 531(1-2):90-9. PubMed ID: 22982558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conformational distributions of unfolded polypeptides from novel NMR techniques.
    Meier S; Blackledge M; Grzesiek S
    J Chem Phys; 2008 Feb; 128(5):052204. PubMed ID: 18266409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Describing intrinsically disordered proteins at atomic resolution by NMR.
    Jensen MR; Ruigrok RW; Blackledge M
    Curr Opin Struct Biol; 2013 Jun; 23(3):426-35. PubMed ID: 23545493
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles.
    Buchner L; Güntert P
    Structure; 2015 Feb; 23(2):425-34. PubMed ID: 25579816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid-state NMR spectroscopy of proteins.
    Müller H; Etzkorn M; Heise H
    Top Curr Chem; 2013; 335():121-56. PubMed ID: 23504090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.