BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 24656305)

  • 1. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli.
    Hsu SY; Lin YS; Li SJ; Lee WC
    J Biosci Bioeng; 2014 Sep; 118(3):242-8. PubMed ID: 24656305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein solubility and differential proteomic profiling of recombinant Escherichia coli overexpressing double-tagged fusion proteins.
    Cheng CH; Lee WC
    Microb Cell Fact; 2010 Aug; 9():63. PubMed ID: 20799977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Region C of the Escherichia coli heat shock sigma factor RpoH (sigma 32) contains a turnover element for proteolysis by the FtsH protease.
    Obrist M; Langklotz S; Milek S; Führer F; Narberhaus F
    FEMS Microbiol Lett; 2009 Jan; 290(2):199-208. PubMed ID: 19025566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic interplay between antagonistic pathways controlling the sigma 32 level in Escherichia coli.
    Morita MT; Kanemori M; Yanagi H; Yura T
    Proc Natl Acad Sci U S A; 2000 May; 97(11):5860-5. PubMed ID: 10801971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Cloning and expression of N-acetyl-D-neuraminic acid aldolase in Escherichia coli].
    Yang WL; Rao R; Shen J; Feng L
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2010 Jan; 39(1):57-63. PubMed ID: 20175237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gut myoelectrical activity induces heat shock response in Escherichia coli and Caco-2 cells.
    Laubitz D; Jankowska A; Sikora A; Woliński J; Zabielski R; Grzesiuk E
    Exp Physiol; 2006 Sep; 91(5):867-75. PubMed ID: 16728456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of N-acetyl-D-neuraminic Acid by Recombinant Single Whole Cells Co-expressing N-acetyl-D-glucosamine-2-epimerase and N-acetyl-D-neuraminic Acid Aldolase.
    Kao CH; Chen YY; Wang LR; Lee YC
    Mol Biotechnol; 2018 Jun; 60(6):427-434. PubMed ID: 29704158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A distinct segment of the sigma 32 polypeptide is involved in DnaK-mediated negative control of the heat shock response in Escherichia coli.
    Nagai H; Yuzawa H; Kanemori M; Yura T
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10280-4. PubMed ID: 7937941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Genetic regulation of the heat-shock response in Escherichia coli].
    Ramírez Santos J; Solís Guzmán G; Gómez Eichelmann MC
    Rev Latinoam Microbiol; 2001; 43(1):51-63. PubMed ID: 17061571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and sequence analysis of rpoH genes encoding sigma 32 homologs from gram negative bacteria: conserved mRNA and protein segments for heat shock regulation.
    Nakahigashi K; Yanagi H; Yura T
    Nucleic Acids Res; 1995 Nov; 23(21):4383-90. PubMed ID: 7501460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-shock protein fusion vectors for improved expression of soluble recombinant proteins in Escherichia coli.
    Kyratsous CA; Panagiotidis CA
    Methods Mol Biol; 2012; 824():109-29. PubMed ID: 22160895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli.
    Chen Y; Song J; Sui SF; Wang DN
    Protein Expr Purif; 2003 Dec; 32(2):221-31. PubMed ID: 14965767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription of the ibpB heat-shock gene is under control of sigma(32)- and sigma(54)-promoters, a third regulon of heat-shock response.
    Kuczyńska-Wisńik D; Laskowska E; Taylor A
    Biochem Biophys Res Commun; 2001 Jun; 284(1):57-64. PubMed ID: 11374870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of N-acetyl-D-neuraminic acid using two sequential enzymes overexpressed as double-tagged fusion proteins.
    Wang TH; Chen YY; Pan HH; Wang FP; Cheng CH; Lee WC
    BMC Biotechnol; 2009 Jul; 9():63. PubMed ID: 19586552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat induction of sigma 32 synthesis mediated by mRNA secondary structure: a primary step of the heat shock response in Escherichia coli.
    Yuzawa H; Nagai H; Mori H; Yura T
    Nucleic Acids Res; 1993 Nov; 21(23):5449-55. PubMed ID: 7505426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles and regulation of the heat shock sigma factor sigma 32 in Escherichia coli.
    Yura T; Kawasaki Y; Kusukawa N; Nagai H; Wada C; Yano R
    Antonie Van Leeuwenhoek; 1990 Oct; 58(3):187-90. PubMed ID: 2256679
    [No Abstract]   [Full Text] [Related]  

  • 17. Expression, purification of human vasostatin120-180 in Escherichia coli, and its anti-angiogenic characterization.
    Sun QM; Cao L; Fang L; Chen C; Dai J; Chen LL; Hua ZC
    Protein Expr Purif; 2005 Feb; 39(2):288-95. PubMed ID: 15642481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overproduction and purification of sigma 32, the Escherichia coli heat shock transcription factor.
    Nguyen LH; Jensen DB; Burgess RR
    Protein Expr Purif; 1993 Oct; 4(5):425-33. PubMed ID: 8251755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of the Xanthomonas campestris rpoH gene coding for a 32-kDa heat shock sigma factor.
    Huang LH; Tseng YH; Yang MT
    Biochem Biophys Res Commun; 1998 Mar; 244(3):854-60. PubMed ID: 9535756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli.
    Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S
    J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.