BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 24656305)

  • 21. An online monitoring system based on a synthetic sigma32-dependent tandem promoter for visualization of insoluble proteins in the cytoplasm of Escherichia coli.
    Kraft M; Knüpfer U; Wenderoth R; Pietschmann P; Hock B; Horn U
    Appl Microbiol Biotechnol; 2007 May; 75(2):397-406. PubMed ID: 17221192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Prokaryotic expression, purification and identification of NY-ESO-1/GST fusion protein in E.coli].
    Tang L; Song CJ; Sun YJ; Li N; Wei YY; Sun Y; Yang K
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2012 Oct; 28(10):1094-7. PubMed ID: 23046942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The P1 promoter of the Escherichia coli rpoH gene is utilized by sigma 70 -RNAP or sigma s -RNAP depending on growth phase.
    Janaszak A; Nadratowska-Wesołowska B; Konopa G; Taylor A
    FEMS Microbiol Lett; 2009 Feb; 291(1):65-72. PubMed ID: 19076234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular basis for regulation of the heat shock transcription factor sigma32 by the DnaK and DnaJ chaperones.
    Rodriguez F; Arsène-Ploetze F; Rist W; Rüdiger S; Schneider-Mergener J; Mayer MP; Bukau B
    Mol Cell; 2008 Nov; 32(3):347-58. PubMed ID: 18995833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aggregation gatekeepers modulate protein homeostasis of aggregating sequences and affect bacterial fitness.
    Beerten J; Jonckheere W; Rudyak S; Xu J; Wilkinson H; De Smet F; Schymkowitz J; Rousseau F
    Protein Eng Des Sel; 2012 Jul; 25(7):357-66. PubMed ID: 22706763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Purification and identification of the Kazal domain of a novel serine protease inhibitor, Hespintor, through a bacterial (Escherichia coli) expression system.
    Lun YZ; Wang XL; Feng J
    Int J Mol Med; 2014 Jul; 34(1):321-6. PubMed ID: 24821237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cloning the gene for the heat shock response positive regulator (sigma 32 homolog) from Pseudomonas aeruginosa.
    Naczynski ZM; Mueller C; Kropinski AM
    Can J Microbiol; 1995 Jan; 41(1):75-87. PubMed ID: 7728657
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli.
    Allen SP; Polazzi JO; Gierse JK; Easton AM
    J Bacteriol; 1992 Nov; 174(21):6938-47. PubMed ID: 1356969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induction of heat shock proteins by abnormal proteins results from stabilization and not increased synthesis of sigma 32 in Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Sep; 176(18):5648-53. PubMed ID: 7916010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of RpoH, a heat shock regulator protein, in Escherichia coli carbon starvation protein synthesis and survival.
    Jenkins DE; Auger EA; Matin A
    J Bacteriol; 1991 Mar; 173(6):1992-6. PubMed ID: 2002001
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter.
    Wang Y; deHaseth PL
    J Bacteriol; 2003 Oct; 185(19):5800-6. PubMed ID: 13129951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of the heat shock response in E coli: involvement of positive and negative cis-acting elements in translation control of sigma 32 synthesis.
    Nagai H; Yuzawa H; Yura T
    Biochimie; 1991 Dec; 73(12):1473-9. PubMed ID: 1725259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased mistranslation protects E. coli from protein misfolding stress due to activation of a RpoS-dependent heat shock response.
    Evans CR; Fan Y; Ling J
    FEBS Lett; 2019 Nov; 593(22):3220-3227. PubMed ID: 31419308
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The transcriptional response of Escherichia coli to recombinant protein insolubility.
    Smith HE
    J Struct Funct Genomics; 2007 Mar; 8(1):27-35. PubMed ID: 17992580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of reduced levels of GroE chaperones on protein metabolism: enhanced synthesis of heat shock proteins during steady-state growth of Escherichia coli.
    Kanemori M; Mori H; Yura T
    J Bacteriol; 1994 Jul; 176(14):4235-42. PubMed ID: 7912695
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of the heat-shock sigma factor RpoH and a second RpoH-like protein in Sinorhizobium meliloti.
    Oke V; Rushing BG; Fisher EJ; Moghadam-Tabrizi M; Long SR
    Microbiology (Reading); 2001 Sep; 147(Pt 9):2399-2408. PubMed ID: 11535780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stochastic kinetic analysis of the Escherichia coli stress circuit using sigma(32)-targeted antisense.
    Srivastava R; Peterson MS; Bentley WE
    Biotechnol Bioeng; 2001 Oct; 75(1):120-9. PubMed ID: 11536134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Transcriptional regulation of stress-inducible genes in procaryotes.
    Yura T; Nakahigashi K; Kanemori M
    EXS; 1996; 77():165-81. PubMed ID: 8856974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The use of operon fusions in studies of the heat-shock response: effects of altered sigma 32 on heat-shock promoter function in Escherichia coli.
    Yano R; Imai M; Yura T
    Mol Gen Genet; 1987 Apr; 207(1):24-8. PubMed ID: 3299002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.