BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24656783)

  • 1. Modulation of inhibitory activity markers by intermittent theta-burst stimulation in rat cortex is NMDA-receptor dependent.
    Labedi A; Benali A; Mix A; Neubacher U; Funke K
    Brain Stimul; 2014; 7(3):394-400. PubMed ID: 24656783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dose-dependence of changes in cortical protein expression induced with repeated transcranial magnetic theta-burst stimulation in the rat.
    Volz LJ; Benali A; Mix A; Neubacher U; Funke K
    Brain Stimul; 2013 Jul; 6(4):598-606. PubMed ID: 23433874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction in cortical parvalbumin expression due to intermittent theta-burst stimulation correlates with maturation of the perineuronal nets in young rats.
    Mix A; Hoppenrath K; Funke K
    Dev Neurobiol; 2015 Jan; 75(1):1-11. PubMed ID: 24962557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous and intermittent transcranial magnetic theta burst stimulation modify tactile learning performance and cortical protein expression in the rat differently.
    Mix A; Benali A; Eysel UT; Funke K
    Eur J Neurosci; 2010 Nov; 32(9):1575-86. PubMed ID: 20950358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent Theta-Burst Transcranial Magnetic Stimulation Alters Electrical Properties of Fast-Spiking Neocortical Interneurons in an Age-Dependent Fashion.
    Hoppenrath K; Härtig W; Funke K
    Front Neural Circuits; 2016; 10():22. PubMed ID: 27065812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuropeptide Y as a possible homeostatic element for changes in cortical excitability induced by repetitive transcranial magnetic stimulation.
    Jazmati D; Neubacher U; Funke K
    Brain Stimul; 2018; 11(4):797-805. PubMed ID: 29519725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple blocks of intermittent and continuous theta-burst stimulation applied via transcranial magnetic stimulation differently affect sensory responses in rat barrel cortex.
    Thimm A; Funke K
    J Physiol; 2015 Feb; 593(4):967-85. PubMed ID: 25504571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-course of changes in neuronal activity markers following iTBS-TMS of the rat neocortex.
    Hoppenrath K; Funke K
    Neurosci Lett; 2013 Mar; 536():19-23. PubMed ID: 23328445
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A specific role for NR2A-containing NMDA receptors in the maintenance of parvalbumin and GAD67 immunoreactivity in cultured interneurons.
    Kinney JW; Davis CN; Tabarean I; Conti B; Bartfai T; Behrens MM
    J Neurosci; 2006 Feb; 26(5):1604-15. PubMed ID: 16452684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of chronic iTBS-rTMS and enriched environment on visual cortex early critical period and visual pattern discrimination in dark-reared rats.
    Castillo-Padilla DV; Funke K
    Dev Neurobiol; 2016 Jan; 76(1):19-33. PubMed ID: 25892203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain differences in the effect of rTMS on cortical expression of calcium-binding proteins in rats.
    Mix A; Benali A; Funke K
    Exp Brain Res; 2014 Feb; 232(2):435-42. PubMed ID: 24202236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theta-burst transcranial magnetic stimulation alters cortical inhibition.
    Benali A; Trippe J; Weiler E; Mix A; Petrasch-Parwez E; Girzalsky W; Eysel UT; Erdmann R; Funke K
    J Neurosci; 2011 Jan; 31(4):1193-203. PubMed ID: 21273404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repetitive transcranial magnetic stimulation recovers cortical map plasticity induced by sensory deprivation due to deafferentiation.
    Kloosterboer E; Funke K
    J Physiol; 2019 Aug; 597(15):4025-4051. PubMed ID: 31145483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repetitive transcranial magnetic stimulation reverses reduced excitability of rat visual cortex induced by dark rearing during early critical period.
    Charles James J; Funke K
    Dev Neurobiol; 2020 Nov; 80(11-12):399-410. PubMed ID: 33006265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. θ burst and conventional low-frequency rTMS differentially affect GABAergic neurotransmission in the rat cortex.
    Trippe J; Mix A; Aydin-Abidin S; Funke K; Benali A
    Exp Brain Res; 2009 Dec; 199(3-4):411-21. PubMed ID: 19701632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-cycloserine normalizes long-term motor plasticity after transcranial magnetic intermittent theta-burst stimulation in major depressive disorder.
    Cole J; Selby B; Ismail Z; McGirr A
    Clin Neurophysiol; 2021 Aug; 132(8):1770-1776. PubMed ID: 34130243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions.
    Hervig ME; Thomsen MS; Kalló I; Mikkelsen JD
    Neuroscience; 2016 Oct; 334():13-25. PubMed ID: 27476436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional and age-related differences in GAD67 expression of parvalbumin- and calbindin-expressing neurons in the rhesus macaque auditory midbrain and brainstem.
    Gray DT; Engle JR; Rudolph ML; Recanzone GH
    J Comp Neurol; 2014 Dec; 522(18):4074-84. PubMed ID: 25091320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase.
    Behrens MM; Ali SS; Dao DN; Lucero J; Shekhtman G; Quick KL; Dugan LL
    Science; 2007 Dec; 318(5856):1645-7. PubMed ID: 18063801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ketamine Administration During the Second Postnatal Week Alters Synaptic Properties of Fast-Spiking Interneurons in the Medial Prefrontal Cortex of Adult Mice.
    Jeevakumar V; Kroener S
    Cereb Cortex; 2016 Mar; 26(3):1117-29. PubMed ID: 25477370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.