These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 24656868)
1. Quantification of prone thoracic manipulation using inertial sensor-derived accelerations. Williams JM; Cuesta-Vargas A J Manipulative Physiol Ther; 2014 May; 37(4):230-5. PubMed ID: 24656868 [TBL] [Abstract][Full Text] [Related]
2. An investigation into the kinematics of 2 cervical manipulation techniques. Williams JM; Cuesta-Vargas AI J Manipulative Physiol Ther; 2013 Jan; 36(1):20-6. PubMed ID: 23207053 [TBL] [Abstract][Full Text] [Related]
3. Short-term effects of thrust versus nonthrust mobilization/manipulation directed at the thoracic spine in patients with neck pain: a randomized clinical trial. Cleland JA; Glynn P; Whitman JM; Eberhart SL; MacDonald C; Childs JD Phys Ther; 2007 Apr; 87(4):431-40. PubMed ID: 17341509 [TBL] [Abstract][Full Text] [Related]
4. The effects of thoracic manipulation on posteroanterior spinal stiffness. Campbell BD; Snodgrass SJ J Orthop Sports Phys Ther; 2010 Nov; 40(11):685-93. PubMed ID: 20710095 [TBL] [Abstract][Full Text] [Related]
5. Differences in force-time parameters and electromyographic characteristics of two high-velocity, low-amplitude spinal manipulations following one another in quick succession. Gorrell LM; Conway PJ; Herzog W Chiropr Man Therap; 2020 Dec; 28(1):67. PubMed ID: 33287851 [TBL] [Abstract][Full Text] [Related]
6. Short-term combined effects of thoracic spine thrust manipulation and cervical spine nonthrust manipulation in individuals with mechanical neck pain: a randomized clinical trial. Masaracchio M; Cleland JA; Hellman M; Hagins M J Orthop Sports Phys Ther; 2013 Mar; 43(3):118-27. PubMed ID: 23221367 [TBL] [Abstract][Full Text] [Related]
8. Thoracic spine manipulation for the management of patients with neck pain: a randomized clinical trial. González-Iglesias J; Fernández-de-las-Peñas C; Cleland JA; Gutiérrez-Vega Mdel R J Orthop Sports Phys Ther; 2009 Jan; 39(1):20-7. PubMed ID: 19209478 [TBL] [Abstract][Full Text] [Related]
9. The kinematics and intra- and inter-therapist consistencies of lower cervical rotational manipulation. Ngan JM; Chow DH; Holmes AD Med Eng Phys; 2005 Jun; 27(5):395-401. PubMed ID: 15863348 [TBL] [Abstract][Full Text] [Related]
10. Reaction Force Magnitude and Orientation During Supine Thoracic Spine Thrust Manipulation: An Exploratory Analysis and Reliability of Preload and Impulse Phase. Dugailly PM; Michaud A; Feipel V; Beyer B J Manipulative Physiol Ther; 2020; 43(6):597-605. PubMed ID: 32593464 [TBL] [Abstract][Full Text] [Related]
11. Thoracic and lumbar spine accelerations in everyday activities. Ng TP; Bussone WR; Duma SM; Kress TA Biomed Sci Instrum; 2006; 42():410-5. PubMed ID: 16817643 [TBL] [Abstract][Full Text] [Related]
12. Thoracic spine thrust manipulation versus cervical spine thrust manipulation in patients with acute neck pain: a randomized clinical trial. Puentedura EJ; Landers MR; Cleland JA; Mintken PE; Huijbregts P; Fernández-de-Las-Peñas C J Orthop Sports Phys Ther; 2011 Apr; 41(4):208-20. PubMed ID: 21335931 [TBL] [Abstract][Full Text] [Related]
13. Inclusion of thoracic spine thrust manipulation into an electro-therapy/thermal program for the management of patients with acute mechanical neck pain: a randomized clinical trial. González-Iglesias J; Fernández-de-las-Peñas C; Cleland JA; Alburquerque-Sendín F; Palomeque-del-Cerro L; Méndez-Sánchez R Man Ther; 2009 Jun; 14(3):306-13. PubMed ID: 18692428 [TBL] [Abstract][Full Text] [Related]
14. Examination of a clinical prediction rule to identify patients with neck pain likely to benefit from thoracic spine thrust manipulation and a general cervical range of motion exercise: multi-center randomized clinical trial. Cleland JA; Mintken PE; Carpenter K; Fritz JM; Glynn P; Whitman J; Childs JD Phys Ther; 2010 Sep; 90(9):1239-50. PubMed ID: 20634268 [TBL] [Abstract][Full Text] [Related]
15. Changes in neck pain and active range of motion after a single thoracic spine manipulation in subjects presenting with mechanical neck pain: a case series. Fernández-de-las-Peñas C; Palomeque-del-Cerro L; Rodríguez-Blanco C; Gómez-Conesa A; Miangolarra-Page JC J Manipulative Physiol Ther; 2007 May; 30(4):312-20. PubMed ID: 17509440 [TBL] [Abstract][Full Text] [Related]
16. Comparison of force development strategies of spinal manipulation used for thoracic pain. Cambridge ED; Triano JJ; Ross JK; Abbott MS Man Ther; 2012 Jun; 17(3):241-5. PubMed ID: 22386279 [TBL] [Abstract][Full Text] [Related]
17. Using functional magnetic resonance imaging to determine if cerebral hemodynamic responses to pain change following thoracic spine thrust manipulation in healthy individuals. Sparks C; Cleland JA; Elliott JM; Zagardo M; Liu WC J Orthop Sports Phys Ther; 2013 May; 43(5):340-8. PubMed ID: 23485766 [TBL] [Abstract][Full Text] [Related]
18. The addition of cervical thrust manipulations to a manual physical therapy approach in patients treated for mechanical neck pain: a secondary analysis. Boyles RE; Walker MJ; Young BA; Strunce J; Wainner RS J Orthop Sports Phys Ther; 2010 Mar; 40(3):133-40. PubMed ID: 20195023 [TBL] [Abstract][Full Text] [Related]
19. Inertial sensors as real-time feedback improve learning posterior-anterior thoracic manipulation: a randomized controlled trial. Cuesta-Vargas AI; González-Sánchez M; Lenfant Y J Manipulative Physiol Ther; 2015; 38(6):425-33. PubMed ID: 26215901 [TBL] [Abstract][Full Text] [Related]
20. The frictional properties at the thoracic skin-fascia interface: implications in spine manipulation. Bereznick DE; Ross JK; McGill SM Clin Biomech (Bristol); 2002 May; 17(4):297-303. PubMed ID: 12034123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]