BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 24657410)

  • 1. Optimization of a chromatographic stationary phase based on gellan gum using central composite design.
    Gonçalves AI; Rocha LA; Dias JM; Passarinha LA; Sousa A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Apr; 957():46-52. PubMed ID: 24657410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of Ocular In Situ Gelling Properties of Low Acyl Gellan Gum by Use of Ion Exchange.
    Reed K; Li A; Wilson B; Assamoi T
    J Ocul Pharmacol Ther; 2016 Nov; 32(9):574-582. PubMed ID: 27611484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of commercial gellan to monovalent cation salts results in acute modification of solution and gel-forming properties.
    Doner LW; Douds DD
    Carbohydr Res; 1995 Aug; 273(2):225-33. PubMed ID: 8565008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of protein and stationary phase properties on protein-matrix-interaction in cation exchange chromatography.
    Urmann M; Hafner M; Frech C
    J Chromatogr A; 2011 Aug; 1218(31):5136-45. PubMed ID: 21684547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced gelation properties of purified gellan gum.
    Kirchmajer DM; Steinhoff B; Warren H; Clark R; in het Panhuis M
    Carbohydr Res; 2014 Mar; 388():125-9. PubMed ID: 24637048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis and isolation of gellan polysaccharide to formulate microspheres for protein capture.
    Coelho J; Eusébio D; Gomes D; Frias F; Passarinha LA; Sousa Â
    Carbohydr Polym; 2019 Sep; 220():236-246. PubMed ID: 31196546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of chromatographic ion-exchange resins VI. Weak anion-exchange resins.
    Staby A; Jensen RH; Bensch M; Hubbuch J; Dünweber DL; Krarup J; Nielsen J; Lund M; Kidal S; Hansen TB; Jensen IH
    J Chromatogr A; 2007 Sep; 1164(1-2):82-94. PubMed ID: 17658538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rheological investigation of high-acyl gellan gum hydrogel and its mixtures with simulated body fluids.
    Osmałek TZ; Froelich A; Jadach B; Krakowski M
    J Biomater Appl; 2018 May; 32(10):1435-1449. PubMed ID: 29534627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters.
    Kotasińska M; Richter V; Thiemann J; Schlüter H
    J Sep Sci; 2012 Nov; 35(22):3170-6. PubMed ID: 22707445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of ordered water and cations in the gel-forming polysaccharide gellan gum.
    Chandrasekaran R
    Adv Exp Med Biol; 1991; 302():773-84. PubMed ID: 1746363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of chromatographic ion-exchange resins V. Strong and weak cation-exchange resins.
    Staby A; Jacobsen JH; Hansen RG; Bruus UK; Jensen IH
    J Chromatogr A; 2006 Jun; 1118(2):168-79. PubMed ID: 16678189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. L-Carnosine: multifunctional dipeptide buffer for sustained-duration topical ophthalmic formulations.
    Singh SR; Carreiro ST; Chu J; Prasanna G; Niesman MR; Collette Iii WW; Younis HS; Sartnurak S; Gukasyan HJ
    J Pharm Pharmacol; 2009 Jun; 61(6):733-42. PubMed ID: 19505363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding effect of Cu(2+) as a trigger on the sol-to-gel and the coil-to-helix transition processes of polysaccharide, gellan gum.
    Kanesaka S; Watanabe T; Matsukawa S
    Biomacromolecules; 2004; 5(3):863-8. PubMed ID: 15132674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of chelatants on gellan gel rheological properties and setting temperature for immobilization of living bifidobacteria.
    Camelin I; Lacroix C; Paquin C; Prévost H; Cachon R; Divies C
    Biotechnol Prog; 1993; 9(3):291-7. PubMed ID: 7763698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of weak cation exchange packings for chromatographic separation of proteins using "click chemistry''.
    Zhao K; Bai Q; Song C; Wang F; Yang F
    J Sep Sci; 2012 Apr; 35(8):907-14. PubMed ID: 22589150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of culture medium compositions for gellan gum production by a halobacterium Sphingomonas paucimobilis.
    Zhang J; Dong YC; Fan LL; Jiao ZH; Chen QH
    Carbohydr Polym; 2015 Jan; 115():694-700. PubMed ID: 25439950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic behavior of adsorber membranes for protein recovery.
    Avramescu ME; Borneman Z; Wessling M
    Biotechnol Bioeng; 2003 Dec; 84(5):564-72. PubMed ID: 14574690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gellan gum: a new biomaterial for cartilage tissue engineering applications.
    Oliveira JT; Martins L; Picciochi R; Malafaya PB; Sousa RA; Neves NM; Mano JF; Reis RL
    J Biomed Mater Res A; 2010 Jun; 93(3):852-63. PubMed ID: 19658177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An initial evaluation of gellan gum as a material for tissue engineering applications.
    Smith AM; Shelton RM; Perrie Y; Harris JJ
    J Biomater Appl; 2007 Nov; 22(3):241-54. PubMed ID: 17494964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars.
    Danalache F; Carvalho CY; Alves VD; Moldão-Martins M; Mata P
    Int J Biol Macromol; 2016 Mar; 84():43-53. PubMed ID: 26657585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.