BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 24657554)

  • 21. Sucrose substitutes affect the cariogenic potential of Streptococcus mutans biofilms.
    Durso SC; Vieira LM; Cruz JN; Azevedo CS; Rodrigues PH; Simionato MR
    Caries Res; 2014; 48(3):214-22. PubMed ID: 24481032
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of surface defects in early caries assessment using quantitative light-induced fluorescence (QLF) and micro-digital-photography (MDP).
    Meharry MR; Dawson D; Wefel JS; Harless JD; Kummet CM; Xiao X
    J Dent; 2012 Nov; 40(11):955-61. PubMed ID: 22892465
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of bovine milk on Streptococcus mutans biofilm cariogenic properties and enamel and dentin demineralization.
    Muñoz-Sandoval C; Muñoz-Cifuentes MJ; Giacaman RA; Ccahuana-Vasquez RA; Cury JA
    Pediatr Dent; 2012; 34(7):e197-201. PubMed ID: 23265155
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An in vitro dynamic microcosm biofilm model for caries lesion development and antimicrobial dose-response studies.
    Maske TT; Brauner KV; Nakanishi L; Arthur RA; van de Sande FH; Cenci MS
    Biofouling; 2016; 32(3):339-48. PubMed ID: 26905384
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A three-species biofilm model for the evaluation of enamel and dentin demineralization.
    Cavalcanti YW; Bertolini MM; da Silva WJ; Del-Bel-Cury AA; Tenuta LM; Cury JA
    Biofouling; 2014; 30(5):579-88. PubMed ID: 24730462
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of white spot lesions formed on human enamel under microcosm biofilm for different experimental periods.
    Levy FM; Braga AS; Pelá VT; Lavender S; Zhang D; Pilch S; Malheiros Z; Stewart B; Magalhães AC; Buzalaf MAR
    J Appl Oral Sci; 2022; 30():e20210560. PubMed ID: 35384988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low-fluoride toothpaste and deciduous enamel demineralization under biofilm accumulation and sucrose exposure.
    Cury JA; do Amaral RC; Tenuta LM; Del Bel Cury AA; Tabchoury CP
    Eur J Oral Sci; 2010 Aug; 118(4):370-5. PubMed ID: 20662910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model.
    Schwendicke F; Dörfer C; Kneist S; Meyer-Lueckel H; Paris S
    Caries Res; 2014; 48(3):186-92. PubMed ID: 24480927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measuring initial enamel erosion with quantitative light-induced fluorescence and optical coherence tomography: an in vitro validation study.
    Chew HP; Zakian CM; Pretty IA; Ellwood RP
    Caries Res; 2014; 48(3):254-62. PubMed ID: 24481141
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationship between gap size and dentine secondary caries formation assessed in a microcosm biofilm model.
    Cenci MS; Pereira-Cenci T; Cury JA; Ten Cate JM
    Caries Res; 2009; 43(2):97-102. PubMed ID: 19321986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel Nanocomposite Inhibiting Caries at the Enamel Restoration Margins in an In Vitro Saliva-Derived Biofilm Secondary Caries Model.
    Zhou W; Peng X; Zhou X; Bonavente A; Weir MD; Melo MAS; Imazato S; Oates TW; Cheng L; Xu HHK
    Int J Mol Sci; 2020 Sep; 21(17):. PubMed ID: 32887330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of fermented milk containing probiotic on dental enamel and biofilm: in situ study.
    Lodi CS; Manarelli MM; Sassaki KT; Fraiz FC; Delbem AC; Martinhon CC
    Arch Oral Biol; 2010 Jan; 55(1):29-33. PubMed ID: 19945694
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations.
    Ayoub HM; Gregory RL; Tang Q; Lippert F
    J Dent; 2020 May; 96():103328. PubMed ID: 32240676
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detection of in vitro demineralization of primary teeth using quantitative light-induced fluorescence (QLF).
    Pretty IA; Edgar WM; Higham SM
    Int J Paediatr Dent; 2002 May; 12(3):158-67. PubMed ID: 12028307
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An in vitro comparison of quantitative light-induced fluorescence-digital and spectrophotometer on monitoring artificial white spot lesions.
    Kim HE; Kim BI
    Photodiagnosis Photodyn Ther; 2015 Sep; 12(3):378-84. PubMed ID: 26117198
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of sucrose containing iron (II) on dental biofilm and enamel demineralization in situ.
    Pecharki GD; Cury JA; Paes Leme AF; Tabchoury CP; Del Bel Cury AA; Rosalen PL; Bowen WH
    Caries Res; 2005; 39(2):123-9. PubMed ID: 15741724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of Fluorescence Imaging with Reflectance Enhancement (FIRE) for Quantifying Enamel Demineralization In vitro.
    Xiao Q; Tu R; He T; Yin W; Li X; Hu D; Zhang X
    Caries Res; 2015; 49(5):531-9. PubMed ID: 26315970
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biofilm extracellular polysaccharides degradation during starvation and enamel demineralization.
    Costa Oliveira BE; Cury JA; Ricomini Filho AP
    PLoS One; 2017; 12(7):e0181168. PubMed ID: 28715508
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of a Cariogenic Biofilm Model to Evaluate the Effect of Fluoride on Enamel and Root Dentine Demineralization.
    Fernández CE; Tenuta LM; Cury JA
    PLoS One; 2016; 11(1):e0146478. PubMed ID: 26731743
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of a novel pH-cycling model using dental microcosm biofilm on the remineralizing efficacy of fluoride in early carious lesions.
    Hwang HY; Kim HE
    Clin Oral Investig; 2021 Jan; 25(1):337-344. PubMed ID: 32699922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.