BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 24657710)

  • 1. Cytocompatibility and osteogenesis evaluation of HA/GCPU composite as scaffolds for bone tissue engineering.
    Du J; Zou Q; Zuo Y; Li Y
    Int J Surg; 2014; 12(5):404-7. PubMed ID: 24657710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.
    Du J; Zuo Y; Lin L; Huang D; Niu L; Wei Y; Wang K; Lin Q; Zou Q; Li Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():150-159. PubMed ID: 30172080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hierarchical Structure and Mechanical Improvement of an n-HA/GCO-PU Composite Scaffold for Bone Regeneration.
    Li L; Zuo Y; Zou Q; Yang B; Lin L; Li J; Li Y
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22618-29. PubMed ID: 26406396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering.
    Yang W; Both SK; Zuo Y; Birgani ZT; Habibovic P; Li Y; Jansen JA; Yang F
    J Biomed Mater Res A; 2015 Jul; 103(7):2251-9. PubMed ID: 25370308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and characterization of porous hydroxyapatite/β-cyclodextrin-based polyurethane composite scaffolds for bone tissue engineering.
    Du J; Gan S; Bian Q; Fu D; Wei Y; Wang K; Lin Q; Chen W; Huang D
    J Biomater Appl; 2018 Sep; 33(3):402-409. PubMed ID: 30223737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration.
    Wang L; Li Y; Zuo Y; Zhang L; Zou Q; Cheng L; Jiang H
    Biomed Mater; 2009 Apr; 4(2):025003. PubMed ID: 19208942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel porous bioceramics scaffold by accumulating hydroxyapatite spherulites for large bone tissue engineering in vivo. II. Construct large volume of bone grafts.
    Zhi W; Zhang C; Duan K; Li X; Qu S; Wang J; Zhu Z; Huang P; Xia T; Liao G; Weng J
    J Biomed Mater Res A; 2014 Aug; 102(8):2491-501. PubMed ID: 23946164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies.
    Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM
    J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings.
    Zhao J; Lu X; Duan K; Guo LY; Zhou SB; Weng J
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):159-66. PubMed ID: 19679453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering.
    Laschke MW; Strohe A; Menger MD; Alini M; Eglin D
    Acta Biomater; 2010 Jun; 6(6):2020-7. PubMed ID: 20004748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo evaluation of highly macroporous ceramic scaffolds for bone tissue engineering.
    Teixeira S; Fernandes H; Leusink A; van Blitterswijk C; Ferraz MP; Monteiro FJ; de Boer J
    J Biomed Mater Res A; 2010 May; 93(2):567-75. PubMed ID: 19591232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robocasting nanocomposite scaffolds of poly(caprolactone)/hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction.
    Dorj B; Won JE; Kim JH; Choi SJ; Shin US; Kim HW
    J Biomed Mater Res A; 2013 Jun; 101(6):1670-81. PubMed ID: 23184729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D-HA Scaffold Functionalized by Extracellular Matrix of Stem Cells Promotes Bone Repair.
    Chi H; Chen G; He Y; Chen G; Tu H; Liu X; Yan J; Wang X
    Int J Nanomedicine; 2020; 15():5825-5838. PubMed ID: 32821104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenesis depending on geometry of porous hydroxyapatite scaffolds.
    Yoshikawa M; Tsuji N; Shimomura Y; Hayashi H; Ohgushi H
    Calcif Tissue Int; 2008 Aug; 83(2):139-45. PubMed ID: 18679740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo evaluation of porous hydroxyapatite/chitosan-alginate composite scaffolds for bone tissue engineering.
    Jin HH; Kim DH; Kim TW; Shin KK; Jung JS; Park HC; Yoon SY
    Int J Biol Macromol; 2012 Dec; 51(5):1079-85. PubMed ID: 22959955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.
    Kim JY; Lee TJ; Cho DW; Kim BS
    J Biomater Sci Polym Ed; 2010; 21(6-7):951-62. PubMed ID: 20482995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.
    Tayton E; Purcell M; Smith JO; Lanham S; Howdle SM; Shakesheff KM; Goodship A; Blunn G; Fowler D; Dunlop DG; Oreffo RO
    J Biomed Mater Res A; 2015 Apr; 103(4):1346-56. PubMed ID: 25044983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.