BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 24657754)

  • 1. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris.
    Kim DG; Lee C; Park SM; Choi YE
    Bioresour Technol; 2014 May; 159():240-8. PubMed ID: 24657754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of light quality on biomass production and fatty acid content in the microalga Chlorella vulgaris.
    Hultberg M; Jönsson HL; Bergstrand KJ; Carlsson AS
    Bioresour Technol; 2014 May; 159():465-7. PubMed ID: 24718357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photon up-conversion increases biomass yield in Chlorella vulgaris.
    Menon KR; Jose S; Suraishkumar GK
    Biotechnol J; 2014 Dec; 9(12):1547-53. PubMed ID: 25155721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions.
    Zhong Y; Jin P; Cheng JJ
    Planta; 2018 Aug; 248(2):489-498. PubMed ID: 29779121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris.
    Atta M; Idris A; Bukhari A; Wahidin S
    Bioresour Technol; 2013 Nov; 148():373-8. PubMed ID: 24063820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid production of Chlorella vulgaris from lipid-extracted microalgal biomass residues through two-step enzymatic hydrolysis.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Aug; 117():1-6. PubMed ID: 22609706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.
    Yeh KL; Chang JS
    Bioresour Technol; 2012 Feb; 105():120-7. PubMed ID: 22189073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs.
    Park WK; Moon M; Kwak MS; Jeon S; Choi GG; Yang JW; Lee B
    Bioresour Technol; 2014 Nov; 171():343-9. PubMed ID: 25218207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of CO₂ supply conditions on lipid production of Chlorella vulgaris from enzymatic hydrolysates of lipid-extracted microalgal biomass residues.
    Zheng H; Gao Z; Yin F; Ji X; Huang H
    Bioresour Technol; 2012 Dec; 126():24-30. PubMed ID: 23073086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength.
    Kang Z; Kim BH; Ramanan R; Choi JE; Yang JW; Oh HM; Kim HS
    J Microbiol Biotechnol; 2015 Jan; 25(1):109-18. PubMed ID: 25341470
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodiesel synthesis from Chlorella vulgaris under effect of nitrogen limitation, intensity and quality light: estimation on the based fatty acids profiles.
    Chávez-Fuentes P; Ruiz-Marin A; Canedo-López Y
    Mol Biol Rep; 2018 Oct; 45(5):1145-1154. PubMed ID: 30109546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions.
    Lv JM; Cheng LH; Xu XH; Zhang L; Chen HL
    Bioresour Technol; 2010 Sep; 101(17):6797-804. PubMed ID: 20456951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel cell disruption technique to enhance lipid extraction from microalgae.
    Steriti A; Rossi R; Concas A; Cao G
    Bioresour Technol; 2014 Jul; 164():70-7. PubMed ID: 24836708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].
    Kong W; Wang Y; Yang H; Xi Y; Han R; Niu S
    Wei Sheng Wu Xue Bao; 2015 Mar; 55(3):299-310. PubMed ID: 26065272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell Growth, Lipid Production and Productivity in Photosynthetic Microalga Chlorella vulgaris under Different Nitrogen Concentrations and Culture Media Replacement.
    Morowvat MH; Ghasemi Y
    Recent Pat Food Nutr Agric; 2018; 9(2):142-151. PubMed ID: 29886843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.
    Münkel R; Schmid-Staiger U; Werner A; Hirth T
    Biotechnol Bioeng; 2013 Nov; 110(11):2882-93. PubMed ID: 23616347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of growth and lipid production characteristics of Chlorella vulgaris in artificially constructed consortia with symbiotic bacteria.
    Xue L; Shang H; Ma P; Wang X; He X; Niu J; Wu J
    J Basic Microbiol; 2018 Apr; 58(4):358-367. PubMed ID: 29488634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced photoautotrophic growth of Chlorella vulgaris in starch wastewater through photo-regulation strategy.
    Ren H; Zhu G; Ni J; Shen M; Show PL; Sun FF
    Chemosphere; 2022 Nov; 307(Pt 1):135533. PubMed ID: 35787884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.
    Maurya R; Paliwal C; Chokshi K; Pancha I; Ghosh T; Satpati GG; Pal R; Ghosh A; Mishra S
    Bioresour Technol; 2016 May; 207():197-204. PubMed ID: 26890794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.
    Cecchin M; Marcolungo L; Rossato M; Girolomoni L; Cosentino E; Cuine S; Li-Beisson Y; Delledonne M; Ballottari M
    Plant J; 2019 Dec; 100(6):1289-1305. PubMed ID: 31437318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.